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Simulations of Interacting Membranes in the Soft Confinement Regime
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The liquid crystalline model biomembrane system consisting of a stack of interacting membranes
is studied in the realistic soft confinement regime by the newly developed Fourier Monte Carlo
simulation technique. In this regime experiment and simulations show that the functional form of
the fluctuation pressure is more nearly exponential rather than the power law valid for the hard
confinement regime. The simulations provide quantitative improvement over perturbation theory. Itis
shown that the harmonic theory that is routinely used to interpret x-ray scattering line shapes is valid.
[S0031-9007(98)07148-8]
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Stacks of lipid bilayers (see Fig. 1) are model systemsvhere z is the local distance between two membranes
for biomembranes that are much studied for two reason$l11]. These interactions are significantly anharmonic,
First, such stacks diffract fairly well and this facilitates to the extent that the potential of a membrane midway
determination of the structure of individual membranespetween two neighboring membranes (at the dashed posi-
which is of primary interest in biophysics. However, tions in Fig. 1) may have a maximum instead of a mini-
these stacks are not crystals with the long-range order thatum. The contrasting regime, sometimes called the hard
is assumed in traditional biophysical analysis, but smeceonfinement regime, consists of only excluded volume or
tic liquid crystals with quasi-long-range order. Therefore,steric interactions between neighboring membranes. That
quantitative use of the scattering intensity for structureegime is appropriate whem is of order100 A because
determination requires correction for the fluctuations enthe hydration force is short ranga & 2 A). For hard
demic in such systems [1]. A harmonic theory [2,3] thatconfinement the effective interbilayer force is the entropic
predicts power law tails in the scattering line shapes fitsluctuation pressure which decays @s’ [12]. Fluctua-
membrane data very well [4,5], but the anharmonicitiegion forces also exist in the soft confinement regime, but
that are inherent in realistic potentials have remained ¢hey have a different functional form which is eludicated
concern for quantitative interpretation [6,7], even thoughby these simulations.

a renormalization group analysis suggested that such ef- In addition to the interbilayer interactions in Eq. (1),
fects are small [8]. the energy of each membrane includes a bending term,
Stacks of bilayers are also much studied becausproportional to the square of the local curvature of the

they provide ideal environments to study fundamentaimembrane. Letu,,(x,y) be the local displacement of
interactions between bilayers, especially since the rangde mth membrane from its average position as shown
of interbilayer distancesa can be systematically varied on Fig. 1. Periodic boundary conditions are imposed in
by applying osmotic pressurR [9]. The corresponding the plane of each membrane and also along the stack, so
theory [10] is an approximate first-order perturbation
theory that again relies on harmonic assumptions, such o 1 2 m
as the normality of the probability distribution function ‘ ! ‘ ! ‘ ! ‘
of the interbilayer spacing. While this theory has been a
valuable guide, it is too inaccurate to extract fundamental
interbilayer interactions fron®(a) data.

Both these issues are addressed using Monte Carl
simulations with realistic intermembrane potentials for the 5
biologically relevant regime where the interbilayer wa-
ter spacinga is of order5-30 A and each membrane is
flexible with bending moduluk, = 10-25kgT. In this
regime, called the soft confinement regime [10], it is usu-
ally supposed that the primary interbilayer interactions for a~20A
dipolar lipids are the attractive van der Waals (vdW) po-
tential and the mysterious, but easily measured, repulsi
hydration potential,
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IG. 1. Snapshot of a slice through a simulated stack of
= 8 two-dimensionall X L fluctuating membranes. Since
internal membrane structure is irrelevant here, each membrane
is depicted as a line. The average position of each membrane

V(z) = —H/12m7% + Ade ¥/, (1) is shown by a dashed line.
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that uy; = up. The membranes can collide, but cannotnegligible <0.2% for L = 700 A), as are variations with
overlap, so thatt,,+1 + a = u,, wherea is the average M (=1% for M = 8) for a andA.
distance between membranes. The Hamiltonian of the It may be noted that stacks of several membranes

stack is then (M = 4) have been previously considered [15-17], but
M1 mostly for the critical phenomenon of unbinding; this

H = / [& (Au,,)? occurs in the limit of large average membrane spacing,
m=0 2 where the van der Waals interaction is the main one,

in addition to the spatial constraints. We have also
performed simulations in the hard confinement regime and

The simulation method. called the Fourier Monte CarloPPtained results for the Helfrich fluctuation free energy
: b o o O A .

method, was developed for single membranes betweefil? /Kca™ with cp = 0.1, in agreement with [15,17].
hard walls [13] and is easily extended to stacks of Figure 3 shows results faP and A as functions ofa
membranes. Each membrane in the stack is representd® realistic values of the potentials [5,14]. Also shown
by a complex array of dimension§ X N of Fourier &€ results for a simpler case when the attractive van der
displacement amplitudes. Instead of moving one latticd/Va@ls force is absent so that the potential experienced by
site at a time, moves are made in Fourier space and gach membrane has a minimum in the middle between its

whole membrane is displaced in each move. This allow&eighbors and is therefore more like a harmonic potential.
larger moves and faster equilibration, without incurringFigure 3 also shows results based on the perturbation ap-

large increases in the bending energy. One differencBroximation [10] which was developed for a single mem-
with our previous simulations [13] is that a fixed osmotic °rane between hard walls. After comparing to harmonic
pressureP ensemble is employed instead of the previoudn€ory for multiple membranes [5], we adjusted [10] for

fixed « ensemble, so that is obtained as a function the case of multiple membranes by putting a factot/af
of P rather thanvice versa Of course. use of the¢  Into the relations for the fluctuational free energy and for

ensemble is fundamentally no different, but it does havé2 and then followed essentially the same procedure as
better convergence properties that we now discuss. in [10]. With this factor, agreement between the pertur-
Simulations performed systematically as a function ofoation theory and the simulations is quite good for small
lattice size, density of lattice points, and number of
membranes in the stack show that accurate results for e o in=0 e
infinite, continuous membranes in infinite stacks can be
obtained at one in real time of the order of one day on a )
Pentium Pro PC. The most sensitive finite-size parameter 6 "o T
is the “density” of each membran€/L, since whenv .t
is varied from 6 to 32, the root mean square fluctuation <X, ,|
in nearest neighbor spacing, defined &s can easily <
change by 40%, and the changes:iare also significant.

+ V(up+ +a — um)i|dxdy. 2

=  —:H=51014erg
.-

This is shown in Fig. 2, which also shows that accurate 2r i
values can be obtained by extrapolation. By comparison,
variations with lateral system size at fixed N/L are 0 :
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FIG. 3. Simulation results (symbols) and perturbation theory

FIG. 2. Effect of finite density N = 6,...,32) on a (solid (lines) for A and log, P versusa for membranes bound at
squares) andA (open circles and right hand ordinate) for P = 0 for the parameter set in [14] with attractive interaction
realistic interaction parameters given in [14] and fBr= (solid squares and lines) and for membranes unbouid=at0

10* erg/cm?. with no attractive interaction (open circles and dashed lines).
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a where the total interaction is harmoniclike because thelistinguishing feature of the true PDF is a rapid decay at
repulsive hydration potential is dominant and the fluctu-small distances. This validates the use of a cutoff [11]
ations are relatively small. The simulations and the thenear2 A to avoid the formal divergence of the vdW po-
ory also agree foiP(a) when there is no attractive van tential. Another feature evident in Fig. 4 is the asymme-
der Waals interaction. However, at larger the simu- try of the actual PDF which shows that large fluctuations
lated A increases withu faster than the perturbation ap- to larger intermembrane spacings are more probable than
proximation for either intermembrane potential. A largelarge fluctuations to smaller spacings. Overall, the shape
difference between the simulation results and the perturef PDF is consistent with that of the interaction potential.
bation theory occurs when the potential has an attractive We turn next to the issue of whether harmonic fluctu-
van der Waals part. The theory predicts the bound valuation theory [2,3] should be expected to be reliable when
ap = 17.9 A for P =0, more than2 A smaller than the interpreting detailed line shapes [4,5] from stacks of bi-
true valueay = 20.2 + 0.1 A obtained by simulation. It layers and smectic liquid crystals that have strongly an-
is also of interest to compare the values o= (A/a)>  harmonic interactions. The most important quantity for
to the hard confinement values. In Fig. 3 the rangg.of determining the line shapes for powder samples [3] is
is 0.06-0.12, in good agreement with experiment [5] but the correlation function in the direction, which is es-
considerably smaller than the hard confinement estimatesentially thek dependence of the mean square relative
0.16-0.21 [10,12,18]. Therefore, neither hard confine- displacement of two membranes of the statk(k) =
ment theory nor harmonic perturbation theory is satis{[u(m + k) — u(m)]*), wherem andm + k are the mem-
factory for the most important case of bound bilayers abrane indices, and averages overare performed for
low P. simulation efficiency. Figure 5 shows profiles Afk),
Existing approximations [10,19] assume that the distri-obtained for stacks with various numbebg of mem-
bution of distance between two nearest neighbor membranes. Convergence witlf suggests that values af(k)
branes is essentially Gaussian. Simulation results imre sufficiently accurate fdr < M /4. However, to mini-
Fig. 4 demonstrate that the actual PDF differs substarmize the finite size effect in a comparison with harmonic
tially from a normal distribution. Although the distribu- theory, Fig. 5 compares the results of the simulation with
tion is more non-normal for smalV, it is nevertheless M = 32 with the exact harmonic result, also fof = 32.
clear that even the limiting distribution is not normal. A In the harmonic theory the bare interbilayer interactions
are approximated with a compression modulBs In
Fig. 5 a value o8 = 1.9 X 10" erg/cm* was chosen to
match the largé end of theM = 32 curve. The result-

0.010 ing A(k) profile allows one to see that = A(1) is in fact
[ a good proxy for describing the long-range correlations,
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-4 FIG. 5. Root mean square fluctuations(k) between kth
(distance - a)/A neighbor membranes for a stack with different numbgfs

of membranes and for the parameter set in [14] (except that
FIG. 4. Probability distribution function (PDF) of the nearest L = 1400 A) at P = 3.16 X 10° erg/cm’. Also shown is
neighbor distance for parameters in [14] alhd= 10* erg/cn? A(k), exactly computed for the case of harmonic interactions
for different membrane densities. with compression moduluB = 1.9 X 10'3 erg/cnt.
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— We show here that the Fourier Monte Carlo method
o H=0 1 is sufficiently fast that it provides a viable alternative.
Indeed, it is now possible to consider using it as part of
a comprehensive data analysis program to determine the
best values of the fundamental interaction parameters in
the biologically relevant soft confinement regime.
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FIG. 6. Simulation results foP; vs a for the parameter set
in [14] and also forH = 0. The slope is\;; = 4.34 A.
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