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Simulations of Interacting Membranes in the Soft Confinement Regime
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The liquid crystalline model biomembrane system consisting of a stack of interacting membra
is studied in the realistic soft confinement regime by the newly developed Fourier Monte Ca
simulation technique. In this regime experiment and simulations show that the functional form
the fluctuation pressure is more nearly exponential rather than the power law valid for the h
confinement regime. The simulations provide quantitative improvement over perturbation theory.
shown that the harmonic theory that is routinely used to interpret x-ray scattering line shapes is v
[S0031-9007(98)07148-8]
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Stacks of lipid bilayers (see Fig. 1) are model system
for biomembranes that are much studied for two reaso
First, such stacks diffract fairly well and this facilitates
determination of the structure of individual membrane
which is of primary interest in biophysics. However
these stacks are not crystals with the long-range order t
is assumed in traditional biophysical analysis, but sme
tic liquid crystals with quasi-long-range order. Therefore
quantitative use of the scattering intensity for structu
determination requires correction for the fluctuations e
demic in such systems [1]. A harmonic theory [2,3] tha
predicts power law tails in the scattering line shapes fi
membrane data very well [4,5], but the anharmonicitie
that are inherent in realistic potentials have remained
concern for quantitative interpretation [6,7], even thoug
a renormalization group analysis suggested that such
fects are small [8].

Stacks of bilayers are also much studied becau
they provide ideal environments to study fundament
interactions between bilayers, especially since the ran
of interbilayer distancesa can be systematically varied
by applying osmotic pressureP [9]. The corresponding
theory [10] is an approximate first-order perturbatio
theory that again relies on harmonic assumptions, su
as the normality of the probability distribution function
of the interbilayer spacing. While this theory has been
valuable guide, it is too inaccurate to extract fundamen
interbilayer interactions fromPsad data.

Both these issues are addressed using Monte Ca
simulations with realistic intermembrane potentials for th
biologically relevant regime where the interbilayer wa
ter spacinga is of order5 30 Å and each membrane is
flexible with bending modulusKc . 10 25kBT . In this
regime, called the soft confinement regime [10], it is usu
ally supposed that the primary interbilayer interactions fo
dipolar lipids are the attractive van der Waals (vdW) po
tential and the mysterious, but easily measured, repuls
hydration potential,

V szd ­ 2Hy12pz2 1 Ale2zyl, (1)
0031-9007y98y81(12)y2610(4)$15.00
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where z is the local distance between two membran
[11]. These interactions are significantly anharmon
to the extent that the potential of a membrane midw
between two neighboring membranes (at the dashed p
tions in Fig. 1) may have a maximum instead of a min
mum. The contrasting regime, sometimes called the h
confinement regime, consists of only excluded volume
steric interactions between neighboring membranes. T
regime is appropriate whena is of order100 Å because
the hydration force is short range (l ø 2 Å). For hard
confinement the effective interbilayer force is the entrop
fluctuation pressure which decays asa23 [12]. Fluctua-
tion forces also exist in the soft confinement regime, b
they have a different functional form which is eludicate
by these simulations.

In addition to the interbilayer interactions in Eq. (1
the energy of each membrane includes a bending te
proportional to the square of the local curvature of th
membrane. Letumsx, yd be the local displacement o
the mth membrane from its average position as show
on Fig. 1. Periodic boundary conditions are imposed
the plane of each membrane and also along the stack
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FIG. 1. Snapshot of a slice through a simulated stack
M ­ 8 two-dimensionalL 3 L fluctuating membranes. Since
internal membrane structure is irrelevant here, each membr
is depicted as a line. The average position of each membr
is shown by a dashed line.
© 1998 The American Physical Society
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that uM ; u0. The membranes can collide, but canno
overlap, so thatum11 1 a $ um, wherea is the average
distance between membranes. The Hamiltonian of t
stack is then

H ­
M21X
m­0

Z ∑
Kc

2
sDumd2

1 V sum11 1 a 2 umd
∏

dx dy . (2)

The simulation method, called the Fourier Monte Car
method, was developed for single membranes betwe
hard walls [13] and is easily extended to stacks o
membranes. Each membrane in the stack is represen
by a complex array of dimensionsN 3 N of Fourier
displacement amplitudes. Instead of moving one latti
site at a time, moves are made in Fourier space and
whole membrane is displaced in each move. This allow
larger moves and faster equilibration, without incurrin
large increases in the bending energy. One differen
with our previous simulations [13] is that a fixed osmoti
pressureP ensemble is employed instead of the previou
fixed a ensemble, so thata is obtained as a function
of P rather thanvice versa. Of course, use of theP
ensemble is fundamentally no different, but it does ha
better convergence properties that we now discuss.

Simulations performed systematically as a function o
lattice size, density of lattice points, and number o
membranes in the stack show that accurate results
infinite, continuous membranes in infinite stacks can b
obtained at oneP in real time of the order of one day on a
Pentium Pro PC. The most sensitive finite-size parame
is the “density” of each membraneNyL, since whenN
is varied from 6 to 32, the root mean square fluctuatio
in nearest neighbor spacing, defined asD, can easily
change by 40%, and the changes ina are also significant.
This is shown in Fig. 2, which also shows that accura
values can be obtained by extrapolation. By compariso
variations with lateral system sizeL at fixed NyL are
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FIG. 2. Effect of finite density (N ­ 6, . . . , 32) on a (solid
squares) andD (open circles and right hand ordinate) fo
realistic interaction parameters given in [14] and forP ­
104 ergycm3.
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negligible (ø0.2% for L $ 700 Å), as are variations with
M (ø1% for M $ 8) for a andD.

It may be noted that stacks of several membrane
(M ø 4) have been previously considered [15–17], bu
mostly for the critical phenomenon of unbinding; this
occurs in the limit of large average membrane spacin
where the van der Waals interaction is the main one
in addition to the spatial constraints. We have als
performed simulations in the hard confinement regime an
obtained results for the Helfrich fluctuation free energy
cflT2yKca2 with cfl ø 0.1, in agreement with [15,17].

Figure 3 shows results forP and D as functions ofa
for realistic values of the potentials [5,14]. Also shown
are results for a simpler case when the attractive van d
Waals force is absent so that the potential experienced
each membrane has a minimum in the middle between
neighbors and is therefore more like a harmonic potentia
Figure 3 also shows results based on the perturbation a
proximation [10] which was developed for a single mem
brane between hard walls. After comparing to harmoni
theory for multiple membranes [5], we adjusted [10] for
the case of multiple membranes by putting a factor of4yp

into the relations for the fluctuational free energy and fo
D2 and then followed essentially the same procedure a
in [10]. With this factor, agreement between the pertur
bation theory and the simulations is quite good for sma
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FIG. 3. Simulation results (symbols) and perturbation theor
(lines) for D and log10 P versusa for membranes bound at
P ­ 0 for the parameter set in [14] with attractive interaction
(solid squares and lines) and for membranes unbound atP ­ 0
with no attractive interaction (open circles and dashed lines).
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a where the total interaction is harmoniclike because th
repulsive hydration potential is dominant and the fluctu
ations are relatively small. The simulations and the th
ory also agree forPsad when there is no attractive van
der Waals interaction. However, at largera, the simu-
lated D increases witha faster than the perturbation ap-
proximation for either intermembrane potential. A larg
difference between the simulation results and the pertu
bation theory occurs when the potential has an attracti
van der Waals part. The theory predicts the bound val
a0 ­ 17.9 Å for P ­ 0, more than2 Å smaller than the
true valuea0 ­ 20.2 6 0.1 Å obtained by simulation. It
is also of interest to compare the values ofm ; sDyad2

to the hard confinement values. In Fig. 3 the range ofm

is 0.06 0.12, in good agreement with experiment [5] bu
considerably smaller than the hard confinement estima
0.16 0.21 [10,12,18]. Therefore, neither hard confine
ment theory nor harmonic perturbation theory is sati
factory for the most important case of bound bilayers
low P.

Existing approximations [10,19] assume that the distr
bution of distance between two nearest neighbor mem
branes is essentially Gaussian. Simulation results
Fig. 4 demonstrate that the actual PDF differs substa
tially from a normal distribution. Although the distribu-
tion is more non-normal for smallN , it is nevertheless
clear that even the limiting distribution is not normal. A
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FIG. 4. Probability distribution function (PDF) of the neares
neighbor distance for parameters in [14] andP ­ 104 ergycm3

for different membrane densities.
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distinguishing feature of the true PDF is a rapid decay a
small distances. This validates the use of a cutoff [11
near2 Å to avoid the formal divergence of the vdW po-
tential. Another feature evident in Fig. 4 is the asymme
try of the actual PDF which shows that large fluctuations
to larger intermembrane spacings are more probable th
large fluctuations to smaller spacings. Overall, the shap
of PDF is consistent with that of the interaction potential.

We turn next to the issue of whether harmonic fluctu
ation theory [2,3] should be expected to be reliable whe
interpreting detailed line shapes [4,5] from stacks of bi
layers and smectic liquid crystals that have strongly an
harmonic interactions. The most important quantity fo
determining the line shapes for powder samples [3] i
the correlation function in thez direction, which is es-
sentially thek dependence of the mean square relativ
displacement of two membranes of the stackD2skd ;
kfusm 1 kd 2 usmdg2l, wherem and m 1 k are the mem-
brane indices, and averages overm are performed for
simulation efficiency. Figure 5 shows profiles ofDskd,
obtained for stacks with various numbersM of mem-
branes. Convergence withM suggests that values ofDskd
are sufficiently accurate fork , My4. However, to mini-
mize the finite size effect in a comparison with harmonic
theory, Fig. 5 compares the results of the simulation with
M ­ 32 with the exact harmonic result, also forM ­ 32.
In the harmonic theory the bare interbilayer interaction
are approximated with a compression modulusB. In
Fig. 5 a value ofB ­ 1.9 3 1013 ergycm4 was chosen to
match the largek end of theM ­ 32 curve. The result-
ing Dskd profile allows one to see thatD ; Ds1d is in fact
a good proxy for describing the long-range correlations
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FIG. 5. Root mean square fluctuationsDskd between kth
neighbor membranes for a stack with different numbersM
of membranes and for the parameter set in [14] (except th
L ­ 1400 Å) at P ­ 3.16 3 105 ergycm3. Also shown is
Dskd, exactly computed for the case of harmonic interaction
with compression modulusB ­ 1.9 3 1013 ergycm4.
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FIG. 6. Simulation results forPfl vs a for the parameter set
in [14] and also forH ­ 0. The slope islfl ­ 4.34 Å.

since the difference betweenD, implied by the “harmonic
curve,” and the actualD for the stack is about only0.2 Å,
i.e., relatively small compared toD ­ 4.6 Å.

How is it that the harmonic theory works quite wel
for the correlation functions in the preceding paragrap
and not so well forP and D in Fig. 3? The answer is
that the perturbation theory does not yield the best val
of B; for the example in Fig. 5 the theory yields a large
B ­ 5.4 3 1013 ergycm4 which accounts for the smaller
value ofD in Fig. 3.

We turn finally to the entropic fluctuation pressur
in a stack of membranes, which is defined to be th
difference between the applied pressure and the press
due to the bare van der Waals and hydration interactio
Perturbation theory [10], experiment [5], and simulation
on a single membrane between hard walls [13] all agr
that the decay of the fluctuation pressure is closer
exponential, with a decay lengthlfl, although the value of
lfl found in both experiment and the previous simulation
is larger than the perturbation theory predictionlfl ­
2l. Figure 6 shows that simulations of stacks also giv
essentially an exponential functional form with a deca
length lfl that is greater than the value2l predicted by
perturbation theory.

A long-range goal is to obtain values of the interbilaye
interaction parameters; the traditional analysis [9] us
osmotic pressurePsad data, which has recently been
supplemented by fluctuationDsad data [5]. One of the
main results of this paper indicates that theD data are
indeed valid, even though the analysis of the basic x-r
scattering data is based on a harmonic theory. Howev
the intrinsic anharmonic nature of realistic interaction
between bilayers in stacks makes it difficult to devis
quantitatively accurate analytic or perturbation theorie
l
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We show here that the Fourier Monte Carlo metho
is sufficiently fast that it provides a viable alternative
Indeed, it is now possible to consider using it as part o
a comprehensive data analysis program to determine
best values of the fundamental interaction parameters
the biologically relevant soft confinement regime.

We thank Horia Petrache for many useful discussion
and especially for his insight that at large distance
smaller deviations from harmonicity may be expected
This research was supported by the U.S. National Ins
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