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Regarding the Entropy of Distinguishable Particles
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The conventional way of explaining Gibbs paradox as due to the distinguish-
ability of particles has been challenged recently and a new fundamental
definition for the entropy has been proposed that gives the same entropy for
distinguishable particles as for indistinguishable particles. In this paper argu-
ments are presented that strongly favor the conventional definition of entropy
and its resolution of Gibbs paradox.

KEY WORDS: Gibbs paradox; Boltzmann entropy; distinguishability; axio-
matics.

1. INTRODUCTION

As is well known the approach to statistical mechanics of Boltzmann and
Gibbs led to Gibbs paradox that the entropy of ideal gases is not exten-
sive. The conventional resolution of Gibbs paradox is that the particles are
really indistinguishable; when a factor of 1/N ! is included to prevent over-
counting of indistinguishable permutations, the entropy becomes extensive.
Although generally accepted, this simple argument has inspired interesting
debate and disagreement (see, e.g., refs. 1 and 2 and references therein),
culminating most recently in a paper that proposes a radical shift in the
very definition of entropy.(3)

The entropy can be written generally as

S =kB ln �. (1)

In order to focus on the essence of the issue, it is convenient(3) to write
only the translational part of S and � in many of the subsequent for-
mulae. It is also sufficient to consider only the case of ideal gases which
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already contain the essence of the issue. Next, it will be useful to identify
the different cases that arise in this paper by using subscripts as follows: D

and I will denote distinguishable and indistiguishable, respectively, C and
Q will denote classical mechanical and quantum mechanical, respectively,
and B and S will denote Boltzmann and Swendsen,(3) respectively.8 The
conventional Boltzmann formulae for N classical indistinguishable (BCI)
particles and for classical distinguishable BCD particles in volume V are

�BCI = V N

N !
and �BCD =V N. (2)

Using a postulational approach to thermodynamics and statistical mechan-
ics, Swendsen has proposed a conceptually different definition of entropy
based on probability densities rather than the Boltzmann definition of
entropy based on phase space volume or number of states.(3) This led to
a result for classical distinguishable particles SCD that is the same as for
classical indistinguishable particles SCI, namely,

�SCD = V N

N !
=�SCI. (3)

Although distinguishable particles are not a very important case physi-
cally, Swendsen emphasized that computer particles are distinguishable, so
the differences above could be significant in simulations, although no spe-
cific example was given.(3) The differences between Eqs. (2) and (3) cer-
tainly have implications for how statistical physics should be presented and
understood.

2. DERIVATION OF THE BOLTZMANN FORMULAE FOR CLASSICAL

PARTICLES

It is often stated and usually accepted that the introduction of the
1/N ! factor for classical indistinguishable particles properly corrects � for
permutations that are physically meaningless. However, the introduction of
this factor has been described as ad hoc,(3) so it may be of interest to see
that it is formally derivable in a Boltzmann phase space calculation for
�. For classical distinguishable particles the translational volume in phase
space can be formally written as

�BCD =AN

∫ L

0
dxN

∫ L

0
dxN−1 . . .

∫ L

0
dx1 =V N, (4)
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where A is the cross sectional area and L is the length of a rectangu-
lar parallelpiped. Because each particle is distinguishable, xi can indepen-
dently take on any values in [0,L].

The case of indistinguishable particles can also be formally treated.
Let us adopt a technique from Section 10 of Swendsen’s paper that he
attributes to C. S. Niu. ‘To describe the positions of indistinguishable par-
ticles, we must use a number system that does not distinguish between
them. One way to do that is to order the particles purely on the basis
of their instantaneous positions. Given a list of the x-coordinates of the
particles . . . , order them from the smallest value of x to the largest, and
number them accordingly. This is consistent with the condition of indistin-
guishability, because the particle with the smaller x-coordinate always has
a lower index, even when the particles move or are exchanged.’(3) Then,
instead of Eq. (4), one has

�BCI =AN

∫ L

0
dxN

∫ xN

0
dxN−1 . . .

∫ x2

0
dx1 =V N/N !. (5)

This is identical mathematically to Swendsen’s application to his proba-
bility functions for a combined system (Eq. (28) in ref. 3), which then
involves another factor X(N). It was not admitted in that paper(3) that the
Niu method is ideally suited to obtaining the 1/N ! factor in this formal,
non ad hoc, way for the BCD case.

3. QUANTUM/CLASSICAL CORRESPONDENCE

It is often asserted that any residual doubts about the 1/N ! factor for
classical particles are laid to rest by considering quantum particles and the
quantum/classical correspondence. Since that has been challenged,(3) this
section will provide a review with some additional discussion of the QD
case that may be of some interest.

It was appreciated in ref. 3 that there should be a consistent corre-
spondence between the classical and quantum cases. In Section 12 of that
paper it was concluded, for the grand canonical partition functions �, that

�SQD =�QI =
∏
i

exp(exp[−β(εi −µ)]) (6)

in the classical thermodynamical (not classical mechanical) limit as the
chemical potential µ becomes strongly negative so that the average
occupancy of any single particle energy level εi becomes small and the
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difference between Fermi–Dirac and Bose–Einstein statistics becomes neg-
ligible. For the quantum indistinguishable case I have used the subscript
QI without an S or B in Eq. (6) because everyone agrees on that case.
To obtain the result for �SQD Swendsen invoked a factor of 1/N ! in his
Eq. (37), essentially by appeal to his earlier development for the classical
case.(3) In this section, I will show that this is inconsistent with the proce-
dure that is used for the QI case.

Although it is not usually done, it is interesting to begin with the case
of j = 1, . . . ,N distinguishable particles, each with different energy levels
εij where i indexes the quantum levels of each particle. We will work with
the canonical partition function for distinguishable particles; some discus-
sion of the grand canonical partition function is given in the appendix.
The general definition of the canonical partition function is written as the
usual sum over states s,

Z(N)=
∑

s

exp(−βEs) (7)

with no factor of 1/N ! Since Es =∑
j εij and the sum over states is a sum

over the index i for each particle j , it immediately follows that

ZBQD(N)=
∑
{i(j)}

exp(−β
∑
j

εij )=
∏
j

∑
i

exp(−βεij )≡
∏
j

ζj , (8)

where the last equivalence defines the single particle partition function ζj .
Next consider the limiting case, which is where textbooks(5) usually

start, that all the distinguishable particles have the same ζj . This requires
that the energy levels εij be the same independent of particle number j ,
and that raises the amusing question whether the particles can still be
distinguishable. One way to achieve this employs spherically symmetrical
particles, each with a different radius Rj , but with two constraints to guar-
antee that the εij are the same for all j ; namely, that all particles have the
same mass M and the same moment of inertia I . Clearly there is an un-
countably infinite number of families of radial distribution functions for
the mass that can satisfy these constraints. One such family has a mass
mj = I/R2

j localized at the surface and the remaining mass M −mj local-
ized at the center of the sphere.(9) This example therefore renders it per-
missible to consider the canonical partition function for N distinguishable,
but similar, particles

ZBQD(N)= ζN . (9)
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The valid textbook result(5) for the classical thermodynamical regime
of indistinguishable particles treated quantum mechanically is given in
Eq. (6). Let us briefly recapitulate the well known procedure(5) for obtain-
ing the canonical partition function ZQI(N) from the grand canonical par-
tition function in Eq. (6),

�QI ≡
∑
N ′

eβµN ′
ZQI(N

′)≈ eβµNZQI(N), (10)

where the maximum term is taken to obtain the last expression. Taking
the logarithm in Eq. (6) shows that ln�QI =N and −βµ= ln(ζ/N). Inser-
tion into Eq. (10) then leads directly to

lnZQI(N)=−N lnN +N +N lnζ, (11)

where ζ is the same single particle partition function defined in Eq. (8).
Comparison to Eq. (9) then leads to the conclusion that

ZQI(N)=ZBQD(N)/N. (12)

Since S = (E +kBT ln ZN)/T and the entropy of quantum indistinguishable
particles is extensive, we also have for the translational part of the entropy

�BQD(N)/�QI(N)=N. (13)

This corresponds nicely with �BCD/�BCI in Eq. (2) but not with �SCD/

�SCI in Eq. (3).
It is important to emphasize that to obtain consistency with the clas-

sical value of �SCD/�SCI in Eq. (3) requires a factor of 1/N ! in the
very definition of the partition function for ZSQD in Eq. (7), but only for
the case of distinguishable particles. If a similar factor of 1/N ! were also
inserted for ZSQI, then one would have �SQD(N)/�QI(N)=N ! similar to
Eq. (13) and inconsistent with Eq. (3). Insertion of 1/N ! in the canonical
partition function for distinguishable particles in Eq. (7) mirrors the sim-
ilar insertion into the grand canonical ensemble in Eq. (37) in ref. 3 for
the SQD case. Such an insertion really is ad hoc, unlike Gibbs’ insertion to
obtain �BCD which was shown in the previous section to follow formally.
But it is much worse. Swendsen applied the 1/N ! to the partition functions
of particles that are afterwards still supposed to be distinguishable and not
to the partition functions of particles that are afterwards supposed to be
indistinguishable. This is logically backwards and indicates a fundamental
inconsistency in the proposals in ref. 3.
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The fundamental inconsistency is seen when one goes back to the
the derivation of the canonical partition function given by Eq. (7). The
derivation of the canonical partition function Z is general and does not
ask whether the particles are distinguishable, indistinguishable, quantum or
classical. It employs a physical partition for particles, so the particles can
be of different types in the system of interest compared to the reservoir
that establishes the temperature. There is no legitimate way to introduce
such specific characteristics of the particles. As shown in Eqs. (7)–(13), the
canonical partition function for clearly distinguishable quantum particles
leads to a non-extensive entropy. Consistency between the quantum and
classical cases then demands that distinguishable classical particles also be
non-extensive, in agreement with Eq. (2) and in disagreement with Eq. (3).

4. EXAMPLE OF AN IRREVERSIBLE PROCESS FOR WHICH SBCD

INCREASES AND SSCD DOES NOT

Although the preceding section may already convince many readers
that Eq. (3) is incorrect, the following discussion may provide deeper
insight into the nature of truly distinguishable particles. Let us prepare
a system of labelled particles j = 1, . . . ,N in a volume V that is sepa-
rated into two subvolumes V1 and V2 by a physical partition that does
not allow any particle to move between the two subvolumes. The initial
state a is prepared with a particular complexion of the distinguishable
particles, namely, those labelled 1,2,3, . . . ,N1 are placed in V1 and those
labelled N1 + 1, . . . ,N are placed in V2. Furthermore, set the partition so
that V1/N1 = V2/N2 = V/N . The partition is then broken and the system
evolves to state b. Using Eq. (2)

�a
BCD =V

N1
1 V

N2
2 <V N =�b

BCD (14)

and the SBCD entropy increases in this process a→b. Using Eq. (3)

�a
SCD = V

N1
1

N1!

V
N2
2

N2!
≈ V N

N !
=�b

SCD, (15)

where the approximation is up to the first two terms in Stirling’s approxi-
mation for the set condition V1/N1 =V2/N2 =V/N . Therefore, in the limit
of large N the SSCD entropy does not increase in this process a→b.

The above process a→b ‘mixes’(7) the distinguishable particles with
labels 1,2,3, . . . ,N1 with those with labels N1 + 1, . . . ,N . Reversing this
process would either require a Maxwell demon or laboriously collecting
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the particles and placing them back into their original subvolumes. This
is therefore an irreversible process. Since entropy should increase for an
irreversible process, the SCD definition in Eq. (3) would seem to be elim-
inated.

It is illuminating to consider an important counter argument. Form
state c from state b by replacing the partition to again subdivide V into
V1 and V2. Now the microscopic state has again been fixed in another spe-
cific complexion of the labelled particles, with 1′,2′,3′, . . . ,N ′

1 contained in
V1 and particles labelled N ′

1 +1, . . . ,N ′ contained in V2, where the primes
indicate a permutation of the labels compared to state a. The fact that
there is again only one complexion in both states a and c might suggest
that the entropy has now been reduced to its value in a before the par-
tition was first removed. Since entropy should not decrease by insertion
of a partition, this might suggest that the true entropy in state b did not
increase and therefore that the process a→b is not irreversible.

The purely mechanistic view implicit in this counter argument is con-
trary to the statistical thermodynamical view of entropy because it assumes
that the entropy is determined by the microscopic description of the final
state. A similar kind of argument could be used to argue that the entropy
of any classical dynamical system can never increase because both the ini-
tial and final dynamical states are unique. Consider a different example for
which an initial state a2 is prepared with many indistinguishable particles,
each of which is placed in the subvolume V1. After a precise time tb2, this
initial state then evolves to just one final microstate b2 in which the indistin-
guishable particles are confined only to be within the larger volume V . The
entropy should increase in this process for any viable definition. This just
provides another example of the well known concept that the uniqueness of
the final microstate is irrelevant to discussions of entropy.

Let us return to the main example in this section that ‘mixes’ two sets
of distinguishable particles. The thermodynamic states b and c should not
be considered to be microstates; they are instead a statistical mixture of
all complexions. This mixture should indeed have a higher entropy than
the uniquely prepared complexion in the initial state a. In order to reduce
the entropy to that of the initial state it is necessary to determine the exact
complexion of labelled particles as was done in preparing state a. We will
call state d the state obtained from c by determination of a unique final
complexion of labelled particles. Obtaining state d requires expenditure of
free energy by the agent determining this state, just as the initial prepara-
tion of state a required the expenditure of free energy.

The particular case of distinguishability in computers deserves addi-
tional consideration. In this case the complexion of the particles is always
in the computer, so how does irreversibility come about? The first answer
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is analogous to the answer above. The computer is the system and to
determine a specific complexion requires the expenditure of free energy,
in this case interrogation of the computer. There is a second answer that
is at least at important. The computer program is the system and any
particular microstate produced at the end of a particular simulation is
just a member of an ensemble of all the states that would be produced.
This ensemble concept mirrors simulation practice. Analysis is never done
on one final microstate, but on a long sequence of microstates obtained
after the system has equilibrated. In this view the entropy should take into
account the entire ensemble that includes all complexions of labelled par-
ticles.

5. EXAMPLE OF A REVERSIBLE PROCESS THAT PERFORMS WORK

WITH NO INTERNAL ENERGY CHANGE FOR WHICH SBCD

INCREASES AND SSCD DOES NOT

If the process described in the preceding section is irreversible, then
it should be possible to harness that process to perform work. Let us first
recall the usual way to do that when one initially has only two different
gases, one with particles of type A in subvolume V1 and one with parti-
cles of type B in subvolume V2, followed by a final state where A and B

are only confined to the volume V =V1 +V2. First, the gas A is allowed
to expand into a volume VA =V , doing work against a piston. Next, the
gas B is allowed to expand into a different volume VB = V , doing work
against a different piston. The two gases, still in separate volumes, are
then merged. The method, not always easy to implement experimentally,
employs two semi-permeable membranes. One membrane, call it AB, is
permeable to A particles and not to B particles and the other, call it AB,
is impermeable to A particles and permeable to B particles. A common
wall between the intial two volumes V is replaced with a wall consisting
of the AB membrane facing VA and AB facing VB . The AB membrane
is then quasistatically swept through VB , while maintaining VA constant.
(The simplest geometry utilizes a cylindrical pipe and a movable piston
which moves the same distance as the AB membrane.) The work required
during this merging process is zero because PAdV for the piston is bal-
anced by −PAdV for the AB membrane, where PA is the pressure of A

particles only because the same concentration of B particles is maintained
on both sides of the AB membrane.

There is no conceptual cutoff to the number of types of particles
that may be initially placed in either of the two subvolumes. The sys-
tem of distinguishable particles is merely the conceptual limit in which
every particle is a different type. The analogous semi-permeable membrane
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AB is required to pass all the distinguishable particles that were originally
placed in volume V1 and none of those in volume V2, and conversely for
AB. Just as in the preceding paragraph, the system produces measurable
work W while achieving the final state consisting just of all particles in the
combined volume V1 + V2. For ideal gases treated isothermally, thermo-
dynamics gives �S =Q/T =W/T > 0. Statistical mechanics should there-
fore also give an increase of entropy when entropy is suitably defined. The
Boltzmann formulae Eq. (2) passes this test but Eq. (3) does not.

While it becomes more difficult to design effective semi-permeable
membranes in the laboratory as the number of different kinds of parti-
cles increases, this is a practical, not a fundamental, issue. It might still
be amusing, however, to consider the model of similar, but distinguishable,
spheres discussed in Section 3. If the spheres labelled 1, . . . ,N in the A

group are all smaller than the spheres in the B group, then an AB semi-
permeable membrane need only have holes larger than the A particles and
smaller than the B particles. It will be left as an easy exercise for the
reader to design a process that uses only this AB semi-permeable mem-
brane to produce work. Although this would produce less work than the
maximum that could be achieved by also having an AB semi-permeable
membrane, this still suffices to show that entropy should increase upon
expanding these two systems of distinguishable particles into a larger com-
mon volume.

It is noteworthy for this discussion that semi-permeable membranes
are very easy to construct in computer simulations. It is clear, even with-
out doing the simulation, that the process in this section will produce
positive work. Any fundamental definition of entropy that ignores this is
incorrect, even within the context of simulations, because this process is
clearly simulable.

6. CRITIQUE OF SWENDSEN’S METHODOLOGY

In Section 7 of ref. 3 Swendsen argues that the Boltzmann entropy
leads to a nonsensical prediction. When the volume V is partitioned into
V1 and V2, one has

�BCD(N1, V1|N2, V2)=V
N1
1 V

N2
2 . (16)

�BCD(N1, V1|N2, V2) is maximized when all the particles are placed in the
larger volume, i.e., N1 = N if V1 > V2. This seems counterintuitive when
one is accustomed to thinking about indistinguishable particles of real
gases. But it is correct for distinguishable particles. Start with all the par-
ticles in the volume V . Use a set of N semi-permeable membranes. Each
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membrane Mi is permeable to all particles except particle i. Use Mi to
compress particle i into V1 or V2. Repeat for each particle, i = 1, . . . ,N .
Measure the total (negative) work W done by the system. Now compare
the measurement of W for different choices of the total number of par-
ticles N1 compressed into V1 and N2 compressed into V2. W is largest
(closest to zero) when all the particles are compressed into the larger sub-
volume. Since the change in entropy from the common initial state is given
by �S = Q/T = W/T , for non-interacting particles treated isothermally,
the entropy is largest when all particles are in the larger subvolume. Note
well that, at the end of the experiment, the set of semi-permeable mem-
branes forms a physical partition between the subvolumes. This entropy
maximization is performed under a crucial constraint that must be empha-
sized. Once the particles are placed in a subvolume, they are not allowed
to move to the other subvolume. Let us describe this constraint as placing
a physical partition in the volume V .

Swendsen obtains his Boltzmann nonsensical prediction by using what
I will call a virtual partition that allows the particles to move from one
subvolume to the other. Then, as the partition is moved so that the larger
subvolume becomes the smaller one, Swendsen’s prediction for Boltzmann
BCD entropy is that the particles must ‘rush from one side of the box
to the other’(3) because this is required for the entropy obtained from
Eq. (16) to remain maximal. The reason that this prediction is incorrect
for the Boltzmann entropy is that, while Eq. (16) is correct for a physi-
cal partition, for a virtual partition the correct equation follows directly
by expanding �BCD = (V1 +V2)

N to give

�BCD(N1, V1 :N2, V2)= N !
N1!N2!

V
N1
1 V

N2
2 . (17)

The combinatorial factor in Eq. (17) counts the number of different com-
plexions of labelled particles that are allowed because each particle is
free to move through the virtual partition. To embed this conceptual and
mathematical difference between virtual and physical partitions into the
notation, a bar | is used to separate the variables for the two subvolumes
in �BCD in Eq. (16) and a colon : is used in Eq. (17).

Let us now make contact with the postulational approach taken by
Swendsen. The maximization postulate (number 1 in ref. 3 and II in
ref. 4), when applied to the present example, can be written

�(N,V )=
∑
N1

�(N1, V1 :N −N1, V −V1), (18)
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where �(N1, V1 : N −N1, V −V1) involves a virtual partition, not a physi-
cal partition. By finding the maximum term in the sum, the most probable
values of N1/V1 are obtained when the particles are free to move between
the subvolumes of V . (Indeed, this is a most important usage of virtual
partitions, which are not to be considered to be inferior to physical parti-
tions, just different.) Using Eq. (17) in Eq. (18) yields

�BCD(N,V )=V N =
∑
N1

N !
N1!N2!

V
N1
1 V

N2
2 . (19)

If one divides Eq. (19) by V N , each term in the sum is mathematically
identical to Swendsen’s Eq. (5) that he derives from probability densities.(3)

Finding the maximum term from either approach leads to the expected
result V1/N1 = V/N as the reader can easily verify. Therefore, when the
appropriate �BCD(N1, V1 : N2, V2) for virtual partitions is used from Eq.
(17), there is no nonsensical prediction that all the particles rush to the
larger subvolume.

Although Eq. (19) is mathematically equivalent to the expression used
by Swendsen,(3) the interpretation is different and this has major conse-
quences as we move on to Swendsen’s postulate 2, which is called the addi-
tivity postulate. When applied to the present example, postulate 2 requires
that one can factor �(N1, V1 :N −N1, V −V1) in Eq. (18) into the form

�(N,V )=
∑
N1

c�:(N1, V1)�:(N −N1, V −V1), (20)

and that the entropy for N1 particles confined to V1 by a physical parti-
tion is given by

S1 =kB ln �:(N1, V1). (21)

Eq. (19) can be mathematically written in the form of Eq. (20) with c=N !
by identifying �:(N1, V1)=V

N1
1 /N1! Swendsen’s Eq. (8) is mathematically

equivalent (with c=N !/V N ). It is Eq. (21) that was relied on in(3) to pro-
pose �SCD given by Eq. (2). However, Eq. (19) and the similar Eq. (5)
of(3) were derived for a virtual partition, as is emphasized by the : sub-
script on � in Eqs. (20) and (21). The identification of S1 in Eq. (21) as
the entropy of a system of N1 particles confined to V1 by a physical parti-
tion does not necessarily follow. It is certainly not valid for BCD particles,
which therefore do not obey the additivity postulate.
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I now argue that the the additivity postulate embodied in Eqs. (20)
and (21) should not be expected to hold for BCD particles because exten-
sivity does not hold for them. As Swendsen properly points out,(3) while
correcting Callen,(4) additivity and extensivity are not the same if a sys-
tem is not homogeneous, such as when there is a surface phase. It is
also claimed in ref. 3 that additivity does not imply extensivity even for a
homogeneous system. To support this claim an example is given in Section
8 of ref. 3. However, that example requires a Maxwell demon that is not
only able to read the labels on distinguishable particles to decide whether
a particle can pass from one subvolume to another but also has to know
that the label being read is the highest or lowest for all the particles in a
particular subvolume. In the absence of any valid counterexamples, I will
follow Callen(4) in supposing that additivity implies extensivity for homo-
geneous systems. If so, then the non-additivity of BCD particles shown
directly in the preceding paragraph would indeed be required by their non-
extensivity.

7. COMMENTS ON POSTULATES

Although one can question the value of the postulational approach
to any scientific field, it is nevertheless useful to have some guidelines,
provided that they are not held too rigidly so as to inhibit revision
when required. As one example of postulate revision, Swendsen(3) revises
Callen’s list of postulates(4) and splits them into five new postulates. In
addition to splitting the first half of Callen’s postulate III into postulates
2 and 5, the second half of Callen’s postulate III becomes Swendsen’s pos-
tulates 3 and 4, which he properly demotes to a lesser status. Postulate 1
(maximization) given by Eq. (18) for the system in this paper, and postu-
late 2 (additivity), given by Eqs. (20) and (21) for the system in this paper,
were the main postulates in ref. 3 for obtaining Eq. (3) in this paper.

Let me discuss the directions another revision might take, without
attempting to eliminate redundancy or supply rigorous language. The
maximization postulate 1 of ref. 3 would seem to be a good one to keep.
One expectation was that postulates 1 and 2 would together allow only
definitions of entropy that would increase when a process is irreversible.
This hope is dashed by Swendsen’s proposed entropy for distinguishable
particles.(3) That proposed entropy SSCD satisfies postulates 1 and 2 but
it does not increase for the irreversible process analyzed in Section 4 nor
for the process in Section 5 that produces net work in an isolated system.
I therefore suggest that postulate 0 should be a reversibility/irreversibility
requirement, even if such a requirement is redundant with other postulates
for most physical systems. The additivity/extensivity postulate is incorrect
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for distinguishable particles, so it should be relegated to a lesser status just
as Swendsen(3) relegated his postulates 3–5 to a lower status.

There should also be a consistency postulate. After a definition of
entropy is made and a statistical mechanical theory is subsequently devel-
oped using that definition, the resulting theory should be self-consistent.
As shown in Section 3, the role of the 1/N ! factor in the comparison
between distinguishable and indistinguishable particles is self-consistent
whether one treats the system classically or quantum mechanically in the
Boltzmann definition, but not in the Swendsen definition.

8. CONCLUDING DISCUSSION

This paper has presented detailed arguments that the conventional
Boltzmann approach is not only consistent with respect to distinguishable
particles and the Gibbs paradox, but superior to the approach advocated
recently by Swendsen.(3) In doing so, this paper has employed the standard
literal meaning of the terms distinguishable and indistinguishable. Two
particles are distinguishable (indistinguishable, respectively) if and only if
their positional exchange produces a different (same, respectively) physical
state. A corollary is that two particles are distinguishable if they are first
identified as 1 and 2, put into a small box, shaken up, and when removed
one can identify which particle was the original number 1. Accordingly,
two He4 atoms are not distinguishable even if they can be momentarily
distinguished when they are far apart and their wavefunctions have negli-
gible overlap. The property of distinguishability and indistinguishability is
therefore just a property of the particles and not of their thermodynamic
circumstances.

A different definition might say that atoms even of the same chem-
ical species are distinguishable if they are in the classical thermodynamic
regime in which the wavefunctions overlap negligibly. By this definition the
property of distinguishability and indistinguishability would not be a prop-
erty just of the particles, but also of the thermodynamic circumstances.
This latter definition has the uncomfortable feature that it does not
provide a definite answer in borderline cases; given enough time, or an
experiment when a gas is strongly compressed, the wavefunctions would
eventually overlap and the particles would no longer be distinguishable.
In any case, this definition denies any distinction between distinguishable
and indistinguishable particles when the system is in the classical thermo-
dynamical regime.

The result in Eq. (3) that the entropy is the same for SCD as
for SCI is consistent with the denial of an intrinsic difference between
CD and CI particles. The different definition in the preceding paragraph
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would support that conclusion as follows. It is agreed that the QI case is
extensive, including the classical thermodynamical regime. If there is no
difference between distinguishability and indistinguishability in the classi-
cal thermodynamical regime, then SQD = SQI in that regime. To maintain
the Q/C correspondence would also then require SCD = SCI. Although it
is not mentioned in ref. 3, this potential reconciliation between Boltzmann
and Swendsen suggests that the difference might be rooted in different
definitions of distinguishability. However, the Swendsen suite of results still
has the inconsistency problem emphasized at the end of Section 3; namely,
the counterintuitive and arbitrary inclusion of the 1/N ! factor in the very
definition of quantum partition functions for distinguishable particles, but
not for indistinguishable particles.

One may also argue that the complexion of labelled particles is a
microscopic description and therefore that such detail should be excluded
from statistical thermodynamics. However, if one ignores the labels in
principle, then the system is indistinguishable in principle. While this radi-
cally removes the troublesome case of distinguishability, it does not respect
its historical pedigree as well as its possible implications for computer sim-
ulations. The computer simulation discussed at the end of Section 5 clearly
produces work in an isolated system, but ignoring the labels and treating
the particles as indistinguishable gives the incorrect result that the entropy
does not increase.

Most computer simulations obtain results for distribution functions
and various derivatives of the free energy; such results are not affected
by the differences between the Boltzmann and the Swendsen formulations
of entropy. Swendsen did not give any specific examples where the dis-
agreement about these conceptual issues regarding entropy makes a differ-
ence in the interpretation of simulation results in ref. 3. As suggested
in the previous section, such examples might help to advance further
discussion.

This paper has emphasized that systems of distinguishable particles
are thermodynamically pathological in that they are not extensive. The
traditional Boltzmann formalism for the entropy, that uses phase space
integrals for classical systems, has the flexibility to clearly exhibit this
pathology. The probability distribution formalism for entropy advocated
by Swendsen(3) forces systems of distinguishable particles to appear not
to be pathological and to have the same entropy as indistinguishable par-
ticles. This inability to discriminate between distinguishable and indistin-
guishable particles reveals an inflexibility that limits the scope of possible
systems that can be treated using statistical mechanics.

I conclude that the conventional explanation of Gibbs paradox pre-
sented in textbooks is adequate for all but the cognoscenti. Discussion of
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such issues may, however, lead to better, or at least rejuvenated, under-
standing of the fundamentals of entropy and statistical mechanics.

APPENDIX

Section 3 only dealt with the canonical partition function ZBQD(N)

and it may be of some interest to consider the grand canonical parti-
tion function for distinguishable particles. It should first be emphasized
that each particle is a different ‘chemical’ species, so there are N different
chemical species present in a system of N distinguishable particles, each
with its own chemical potential µj which may be derived as the increase
in free energy when the particle is added. Using Eq. (8), this increase in
free energy gives

µj =−kBT ln(ζj ). (22)

This result is consistent with the textbook formula for weakly interact-
ing systems in the classical thermodynamic regime, µj = −kBT ln(ζj /Nj ),
because Nj = 1 for each chemical species when the particles are distin-
guishable.

The grand canonical ensemble is a trifle awkward to define if every
particle is different and there is only one particle Nj = 1 of each species
present in the universe. What can then act as a reservoir for such particles?
One can proceed, however, if the system of interest contains one particle
on average of each species, Nj =1. There is then exchange of particles with
a reservoir that contains many particles of each species j and one has

�BQD =
∏
j

�j =
∏
j

∏
i

exp(exp[−β(εij −µj )]), (23)

where the second equality derives from Eq. (6). To ensure that the average
value, Nj =1, requires

∑
i

exp[−β(εij −µj )]≡Nj =1, (24)

which gives the same value for µj as Eq. (22).
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