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To address concerns about how to obtain the height-height spectrum from simulations of biomem-
branes, we emulated the fluctuations in real space using exact input spectra. Two different methods
that have given different results in the literature were then used to extract spectra from the emulated
fluctuations that were then compared to the exact input spectra. A real space method shows system-
atic, but small deviations attributed to splines introducing an artifactual filter. A direct Fourier method
obtains accurate results when the in-plane placement of the emulated particles is uncorrelated with
the out-of-plane undulations, but systematic underestimates occur when the particle placement is
more realistically correlated with the undulations. Although quantitative corrections cannot be esti-
mated from our one-dimensional model, the results are qualitatively consistent with the direct Fourier
method underestimating the 1/q2 spectral dependence that is characteristic of a tilt degree of freedom
in simulations. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4892422]

I. INTRODUCTION

Biomembranes are two-dimensional structures that un-
dergo thermal fluctuations. Defining the unperturbed mem-
brane to lie in the xy plane, the out-of-plane, transverse, small
amplitude, undulational fluctuations are described by u(x, y),
the displacements in the z direction. These fluctuations have
biological consequences1, 2 and they are used to obtain quan-
titative structure from experimental x-ray scattering.3 Simu-
lations of biomembranes in equilibrium are an important tool
for validating the continuum theories which provide predic-
tions of experimental Fourier spectra.4–6

Brandt et al.7 performed large scale molecular dy-
namics simulations from which the average undulational
Fourier spectrum Su(q) ∼ 〈|u(q)|2〉 was obtained employ-
ing a method8–11 called the Direct Fourier (DF) method that
differs from the alternative Real Space (RS) method that
has been somewhat more commonly used for lipid bilayer
simulations.4, 5, 12, 13 The DF method obtained a Fourier spec-
trum SDF

u (q) that conformed to the classical tensionless un-
dulation spectrum14, 15 for small q,

Su(q) ∼ 1/q4. (1)

For larger q, SDF
u (q) included an apparently additive term

equal to a suitably normalized spectrum Sρ(q) obtained
from in-plane, longitudinal, fluctuations ρ(x, y) of the lipid
molecules. Therefore, it was suggested that subtraction of Sρ

from SDF
u (q) gave the true undulation spectrum Sexact

u (q). The
major conclusion from this procedure was that there was no
crossover from the tensionless 1/q4 undulation spectrum to
the 1/q2 regime that is found using the RS method. A 1/q2

regime had been predicted by earlier theories of molecular

a)jcalbert@alumni.cmu.edu
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protrusion4, 5, 16 and is now being predicted by theories of
molecular tilting.12, 13, 17 However, there is no proof of simple
additivity,

SDF
u (q) = Sexact

u (q) + Sρ(q), (2)

of the transverse and longitudinal fluctuations in the DF spec-
trum, so a 1/q2 term could have been suppressed by the sub-
traction. The DF method has been criticized for not agreeing
with RS results and with tilt theories.13, 17 This is an issue that
is difficult to resolve with existing molecular dynamics sim-
ulations because limitations on the size and time scales con-
strain the small end of the q range, thereby making it difficult
to disentangle terms with different power law behavior. This
compromises the ultimate goal of determining values of the
bending modulus Kc and the tilt modulus Kθ from the undu-
lation spectra Su(q).

This paper addresses this issue by devising emulated data
that input an exactly known spectrum Sexact

u (q) and then ana-
lyzing these data with the DF method to test whether subtrac-
tion of Sρ(q) from SDF

u (q) returns the known Sexact
u (q) input.

In this paper, the system is simplified to a one-dimensional
analogue that we construct to have the same q dependence
as the two-dimensional case; Appendix A provides theoreti-
cal background for this simplification. Our numerical results
show that, when lateral (x-y) and undulation (z) fluctuations
are completely uncorrelated, the DF method effectively repro-
duces Sexact

u . However, upon inclusion of a simple and neces-
sary geometric correlation, the DF method, while continuing
to give accurate results for wide ranges of the parameters, gen-
erally underestimates the undulation spectrum in the q range
where a 1/q2 term would be observable. Interestingly, the RS
method also suppresses the spectrum, but only for larger q
compared to the DF method, so it is generally freer from arti-
facts that affect the interpretation of the Su(q) spectrum.

0021-9606/2014/141(6)/064114/8/$30.00 © 2014 AIP Publishing LLC141, 064114-1
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FIG. 1. Typical u(x) for one set of random φm, Kc = 20 kT, 〈u〉 = 0,
〈u2〉1/2 = 6.7 nm.

II. TRANSVERSE FLUCTUATIONS

We begin with a 1-dimensional continuum model of
length L with periodic boundary conditions. The mth har-
monic is thus related to its wavenumber qm and wavelength
λm by

qm = 2π/λm = 2πm

L
. (3)

From Eq. (1) the amplitudes of these normal modes are pos-
tulated to be

u(qm) = b′eiφ
m

q2
m

, (4)

where b′ is a numerical constant to be determined shortly and
φm is a random phase. Real space undulations u(x) are then
obtained using

u(x) =
∑
m

u(qm)eiq
m
x =

∑
m

b′

q2
m

ei(q
m
x+φ

m
), (5)

where the φm are generated as random numbers over a uni-
form distribution in the range [0, 2π ]. For real u(x), the sums
include negative m with φ−m = −φm. Figure 1 shows u(x) for
one set of random φm. To emulate thermal averages, many
random sets are generated, each corresponding to an MD
snapshot. Note that, while the phases are random, b′ is an ex-
act number, so |u(q)|2 is precisely known and is the same for
each emulated microstate. This eliminates an uncertainty in-
herent in MD simulations and accounts for our use of the word
emulations instead of simulations.

III. DISCRETIZATION

As lipid membranes are comprised of discrete molecules,
an MD simulation only gives u(xn) at discrete values of xn,
n = 1, . . . , N. Crucially, the lateral coordinates xn may not
be evenly spaced, so the surface u(x) cannot be described
by a simple discrete Fourier transform. The RS method ad-
dresses this problem by interpolating u(xn) onto a uniform x
grid which is then Fourier analyzed to obtain u(qm). The DF
method calculates the u(qm) directly from the simulated u(xn)

using

u(qm) = 1

N

N∑
n=1

u(xn)e−iq
m
x

n , (6)

where the 1/N normalization factor is required for consistency
with Eq. (5).

We now discuss and quantify the b′ parameter in Eq. (4).
Appendix A shows that the thermally averaged height-height
spectrum is given by

〈|u(qm)|2〉 = kT

KcN
2a2q4

m

, (7)

where kT is the thermal energy, Kc is the bending modulus,
and a = L/N is the mean distance between points. Follow-
ing Brandt et al.,7 it is convenient to compare different values
of N on the same plot by defining the normalized undulation
spectrum

Su(qm) = N2〈|u(qm)|2〉. (8)

This normalization will be used both for the DF spectrum
SDF

u (qm) and for the exact input spectrum Sexact
u (qm). With

this normalization,

Sexact
u (qm) = b2/q4

m, (9)

where

b2 = kT

Kca
2
, (10)

and the b′ in Eqs. (4) and (5) equals b/N. Appropriate bio-
physical choices for the parameters are Kc/kT = 20 and
a = 0.8 nm, giving b = 0.28 nm−1. This choice places Su(q)
on a similar scale as Fig. 3 in Brandt et al.7

Although the xn are not located on a uniform grid in a
simulation of a fluid phase bilayer, it is illuminating to con-
sider a kind of “crystalline” case for which the xn are chosen
to be precisely at xn = (n − 1)a, for n from 1 to N. As is
well known in solid state physics, Fourier spectra of lattices
consist of Brillouin zones that repeat in q space where the
boundary of the first Brillouin zone is π /a = qB > qm > −qB.
Unlike the continuum case where the value of q is unlimited,
for the discrete system, any q outside the first Brillouin zone
is equivalent to a q in the first Brillouin zone that differs by
integer multiples of 2π /a. Figure 2 shows the result of apply-
ing Eq. (6) to Eq. (5) where the independent q modes were
restricted to the first Brillouin zone with amplitudes given by
Eq. (4). The inset emphasizes the repeating Brillouin zones
that are replicated by Eq. (6). The main figure emphasizes
that Eq. (6) reproduces the input |u(qm)|2 exactly. One also
sees that our real space method essentially applies a filter that
underestimates the true spectrum near qB. We used a mono-
tone piecewise cubic interpolation18 to obtain a smooth u(x)
on a grid, where the result did not depend significantly on the
grid size when it was smaller than about one third of the lattice
spacing.

The lateral density consists of delta function particles
located at positions xn. The Fourier components of the
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FIG. 2. A “crystalline” case with particles placed laterally on a uniform grid
and with the input parameters in Figure 1. The exact input q−4

m undulation
modes are shown as black squares and the direct Fourier method produces
the red ×’s that are periodic in successive Brillouin zones as emphasized in
the inset. The in-plane structure factor S

ρ
(q) is a sum of delta functions lo-

cated at 2 πh/a for integer h, indicated by the large blue squares. Also shown
with green diamonds is a real space result SRS

u obtained using a cubic spline
interpolation.

longitudinal lateral density fluctuations are then

ρ(qm) = 1

N

N∑
n

e−iq
m
x

n , (11)

and the thermal average of 〈|ρ(qm)|2〉 is the usual longitudinal
structure factor. Following Brandt et al.,7 the corresponding
normalized in-plane structure factor is defined to be

Sρ(qm) = N2〈u2〉〈|ρ(qm)|2〉, (12)

where 〈u2〉 is the thermal average of the average over lat-
tice sites of the mean square transverse displacements in real
space,

〈u2〉 ≡
〈

1

N

N∑
n=1

|u(xn)|2
〉

, (13)

which corresponds to the factor introduced by Brandt et al.
and which gives Sρ the same physical dimensions and high-q
limit as Su.

7

For the crystalline case, Sρ(qm) is a delta function comb,
namely, zero except when q = 2πh/a for integer h. There-
fore, subtraction does not affect the exact agreement of the
DF result with the exact spectrum except at these peak values.
These values of q correspond to q = 0 in the first Brillouin
zone for which u(q = 0) is undefined in Eq. (4). Physically,
the q = 0 mode describes uniform translation in z, which is ex-
cluded in simulations by the placement of z = 0 to correspond
to the center of mass in the z direction for each snapshot. The
question now becomes whether the DF method is a good ap-
proximation for fluid phase simulations and over what range
of q it may apply. For that, we turn in Sec. IV to adding lateral
displacements to the uniformly spaced particle positions.

We end this section by noting that there is no advantage
to extending the input values of |u(qm)|2 for qm outside the
first Brillouin zone; when many sets of φm phases are aver-
aged, their amplitudes are simply added to the values in the
first Brillouin zone; these additions only subject SDF

u (q) to
negligible random noise near the zone boundaries.

IV. LATERAL FLUCTUATIONS

The main consideration for adding lateral fluctuations
is how to choose the xn values. We have tried three differ-
ent models. (i) Independent random displacement δn of each
xn from its gridded value na neglects any correlation caused
by interactions between nearest neighbors. It can be shown
that this model gives a q2 dependence to the Sρ(qm) spectra.
As this is unlike the MD simulations and as the model does
not respect interactions between neighboring particles, we do
not show any results for this artificial model. (ii) Assuming
harmonic interactions between neighbors spaced a apart, the
usual phonon spectrum for discrete particles has a spectrum
that depends on q as [sin(qa/2)]−2. The appropriate emula-
tion input is

δn ≡ xn − na =
√

kT

KlatN

N/2∑
m=1

cos(qmna + θm)

sin(qma/2)
, (14)

where the θm are random phases and Klat is the har-
monic spring constant. Appendix B raises the interesting,
but not crucial, issue of discrete versus continuum input
spectra. (iii) We have mainly generated the xn values using
a stochastic method, reminiscent of the so-called paracrys-
talline model,19, 20 which, unlike model (i) but like model (ii),
correlates the displacements between neighboring particles.
Particle 1 is placed at x1 = 0 and then subsequent positions, n
= 2, . . . , N + 1, are iteratively computed using

x̃n = x̃n−1 + a + δn, (15)

where δn is a random number generated over a gaussian dis-
tribution centered at 0 that has root mean square value σ lat.
This creates a dependence between nearest neighbor separa-
tions, not unlike real neighboring atoms. However, this does
not guarantee periodic boundary conditions because x̃N+1 is
only accidentally located at (N + 1)a, so each x̃n is rescaled
by the factor

f = Na

x̃N+1 − x̃1

. (16)

For any of the three methods of generating the lateral
fluctuations, one set of δn generated one “snapshot” of the
lateral fluctuations of discrete particles. Many random sets
of δn were similarly generated while also generating sets of
random φm for the transverse fluctuations and averages were
then taken over a number W of these “snapshots.” Once the
xn were chosen, we considered two options for choosing the
value of u(xn). Option 1 uses Eq. (5); this keeps the particles
on the postulated, continuum u(x) surface. Option 2 sets u(xn)
equal to its value at x = na calculated on the grid; this takes
the particle off the original u(x) surface, thereby involving
protrusions, although these protrusions are highly correlated
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 u(x)
 ρ(x)

FIG. 3. Exaggerated schematic emphasizing that non-zero derivatives in u(x)
lead to larger lateral density ρ(x).

with the lateral fluctuations. We found that the differences in
SDF

u (q) using these two options are negligible for physically
realistic values of Kc because there is little difference in the
u(xn) and the u(na) values; subsequent results are given only
for option (1).

There is, however, an important oversight in the above
procedures for generating the xn. A reasonable expectation is
that the average distance between neighbors will be the same
along the u(x) curve. As shown for the exaggerated example
in Fig. 3, this leads to a higher density ρ(x) for larger slopes in
u(x). This introduces correlations between u(x) and ρ(x) not
represented in previous methods of generating sets of {xn}
and {u(xn)}, but which must exist in a physical system. This
effect was achieved in our emulations by first generating a sur-
face u(x) as described in (5) and a set of lateral positions {xn}
by one of the methods detailed above. New lateral positions{
x̂n

}
were then calculated iteratively using∫ x̂

n+a

x̂
n

α(x)dx = (xn+1 − xn)
L′

L
, (17)

where α(x) =
√

1 + (du/dx)2 and the total length is

L′ =
∫ L

0
α(x)dx. (18)

This has the effect that fractional position of the particle x̂n

along the length of the curve u(x) with total length L′ is equal
to the fractional position of xn along the flat line of length
L. Note that the periodic boundary condition x̂N+1 = L fol-
lows by summing Eq. (17) over n because xN+1 = L from Eq.
(16), so this construction enforces periodic boundary condi-
tions and it ensures that nearest-neighbor spacings are calcu-
lated tangent to the curve u(x).

The input descriptors for each emulation are the number
of particles N (we only show N = 1000), the average spac-
ing between particles a (we use a = 0.8 nm, corresponding to
an area/lipid of 0.64 nm2 (Ref. 21)), the bending modulus Kc,
the average root mean square nearest neighbor lateral fluctua-
tion σ lat, and the number W (always 104) of our uncorrelated
snapshots. (If we suppose that 10 ps snapshots are reasonably
uncorrelated, W = 104 would be obtained from a 100 ns sim-
ulation.) Some output descriptors are the root mean square
transverse fluctuation σ trans = 〈u2〉1/2 (from Eq. (13), noting
that x̂n are used when correlations are included), and the root
mean square longitudinal deviation, 〈〈(xn − na)2〉1/2〉, which
is typically about 15 times greater than σ lat for N = 1000.

V. RESULTS

Figure 4 shows the results of adding lateral fluctuations
to a system that has a spectrum consisting of a sum of 1/q4 and
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FIG. 4. Results for paracrystalline lateral fluctuations and particle placement
uncorrelated with undulations, averaged over W = 104 snapshots, with σ lat= 0.012 nm, to a 1-d system of N = 1000 particles with average separation
a = 0.8 nm and with Kc/kT = 20, K

θ
= 0.11 kT /nm2 ∼ 0.46 mN/m, and

σ trans = 6.7 nm. The inset shows the relative errors of the DF and the RS
methods normalized to Sexact

u . The exact input adds the q−2 and the q−4

terms shown by the solid lines.

1/q2 terms. With increasing q, the exact input values of Su(q)
decrease and become as small as Sρ(q) at a crossover value
qc ≈ 1 nm−1 near the center of a crossover region (0.7 < q < 2
nm−1) for SDF

u ; after tracking Sexact
u for smaller q, SDF

u tracks
Sρ for larger q. The choice of N = 1000 was made to extend
the small q region by a decade compared to currently fea-
sible atomic level or coarse-grained simulations. The choice
of σ lat in Figure 4 was made so that the crossover region
occurs at similar values of qc as the simulations of Brandt
et al.7 However, the factor 〈u2〉 in Sρ scales as N2 as shown in
Appendix C. Therefore, in order to obtain the same qc, it is
necessary that σ lat in Eq. (12) be small. This means that the
nearest neighbor peak in Sρ at q = 2π /a is much sharper than
seen by Brandt et al. We also obtained a broader peak with
the same qc by reducing N and increasing σ lat.

In the main panel of Fig. 4 the differences SDF
u − Sρ be-

come noisy as q increases; as expected, this noise level scales
as 1/

√
W . Furthermore, SDF

u − Sρ appears to deviate strongly
from Sexact

u , but the logarithmic plot is very misleading in
this regard because it does not show negative deviations and
it spreads out the distribution for small deviations. The in-
set shows that the deviations (SDF

u − Sρ − Sexact
u ) generally

average to Sexact
u . However, in the inset we have chosen to di-

vide these differences by Sexact
u because that is the quantity

one wishes to extract, and that emphasizes that the statistical
deviations using the DF method become rather too large for
suitable averaging as q exceeds 2 nm−1 when Sexact

u becomes
very small. The RS result, by comparison, remains smooth
but exhibits systematic deviations for large q as shown in the
main panel of the figure. Emulations with particle placement
uncorrelated with undulations have been obtained for many
different values of Kc, different size N, with and without a
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FIG. 5. Results for particle placement correlated with undulations and
paracrystalline lateral fluctuations, averaged over W = 104 snapshots, with
σ lat = 0.002 nm, to a 1-d system of N = 1000 particles with average projected
separation a = 0.8 nm and with Kc/kT = 20, K

θ
= 12 kT /nm2 ∼ 50 mN/m

and σ trans = 6.7 nm. The inset shows the differences between SDF
u − S

ρ
and

the input values Sexact
u normalized to Sexact

u . The thin solid line shows the
q−4 part of the exact input.

q−2 tilt term and with different amounts of lateral fluctuations
σ lat. The DF extracted spectrum does not show systematic de-
viations from the exact input.

Fig. 5 shows that correlating the particle placement with
the undulations has two effects. The first is in Sρ for q < 1
nm−1. As shown in Fig. 3, projecting equally spaced points
on the undulating curve leads to additional in-plane inho-
mogeneity and this accounts for a larger Sρ , increasingly so
for the small q modes that have larger Su amplitudes. The
second effect is that the DF subtraction now gives slightly
smaller values than the exact input for q > 1 nm−1, as best
seen in the inset to Fig. 5. As this is in the direction of
underestimating a q−2 term, we explored this effect further
for other values of the system parameters. This underestima-
tion became quite dramatic for smaller Kc/kT as shown in
Fig. 6. Instead of following the input spectrum that has a
q−2 tilt contribution, the DF spectrum follows the q−4 line
up to q = 1 nm−1 and then plunges to negative values as em-
phasized by the inset to Fig. 6. In contrast, the RS method
tracks the exact spectrum to larger q, roughly the same as in
Fig. 4.

This underestimation is qualitatively similar to what is
shown in Fig. 4(a) in Brandt et al.7 There it was suggested
that the negative deviations that appeared for larger q might
have been due to calculating Sρ in the projected (x, y) plane.
The suggested unperformed alternative was to calculate Sρ on
the curve, which we will call Sρ

∗. Calculating Sρ
∗ is essen-

tially the same as calculating Sρ with no correlations of par-
ticle placement with undulations; although there should be a
small shift in the q values because the average distance be-
tween points exceeds a, the near constancy of the uncorre-
lated Sρ should impart little difference compared to Sρ

∗. Un-
fortunately, and somewhat surprisingly, Fig. 7 shows that this
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FIG. 6. Results for with correlated particle placement with Kc/kT = 5 and
K

θ
= 3 kT /nm2 ∼ 13 mN/m that gives σ trans = 13.3 nm. Other input pa-

rameters are the same as in Fig. 5.

refinement of subtracting Sρ
∗ from the correlated SDF

u gives
unacceptably large systematic positive deviations from the ex-
act input values.

VI. DISCUSSION

Lipid bilayers have a non-zero thickness and there are
distributions of different atoms along the bilayer normal. The
phosphates are the favorite for describing the upper and lower
membrane surfaces in simulations. The terminal methyls on
the hydrocarbon chains are best for describing the center of
the membrane. Large differences in SDF

u (q) result from this
choice as seen in Fig. 2(a) in Braun et al.22 Both choices gave
the usual q−4 behavior in SDF

u (q) for small q. But for q in the
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range 1 − 3 nm−1, using the phosphate groups gave a strongly
increasing SDF

u (q), whereas using the terminal methyl groups
gave a nearly constant SDF

u (q). The latter behavior is similar
to our emulations here, which is not surprising as our model
has a single surface, similar to the terminal methyl surface
in MD simulations. While it could have been of interest to
study a model that has two surfaces emulating the phosphate
groups in MD bilayer simulations, this paper has focussed on
the reliability of methods for extracting the true spectra for
which a single surface suffices.

We obtained many results, such as Fig. 4, for which the
DF subtraction method reproduced the exact input to high ac-
curacy when the particles were distributed with average equal
spacing on the projected x axis. However, that procedure does
not correlate the particle spacing with the undulations. In
the uncorrelated case, Eq. (2) indeed follows as we show in
Appendix D. However, as it is more realistic to distribute the
particle positions on the undulating curve with equal average
spacing as indicated in Fig. 3, we performed emulations with
such correlations. For the typical value Kc/kT = 20 the DF
subtraction also was rather accurate, but small systematic de-
viations occurred as shown in Fig. 5. Fig. 6 shows that these
deviations became quite large for Kc/kT = 5, indicating that
the DF subtraction method is incapable of dealing quantita-
tively with correlations between undulations and density fluc-
tuations, even when the alternative subtraction in Fig. 7 was
tried. The underestimation of the DF method occurs in a cru-
cial q range of the spectrum that is required to extract the ef-
fect of tilt. The underestimated DF spectrum in Fig. 6 is simi-
lar to a simulated DF spectrum, from which it was concluded
that tilt has no effect.7 Although that simulation had Kc/kT
= 19 and our emulations at Kc/kT = 20 do not show a sim-
ilarly large effect, we do not suggest that estimates of ac-
curacy from one-dimensional emulations should be simply
transferred to two-dimensional simulations. The more signif-
icant finding in this paper is that the DF method can lead to
significant underestimation of the effect of tilt on the spec-
trum.

Figures 4 and 6 also show that a RS spline method be-
gins to deviate from the exact input as the boundary of the
first Brillouin zone is approached, consistent with RS meth-
ods introducing an effective filter as noted by Brandt et al.7

However, our results using the RS method indicate that it pro-
vides a good approximation to the spectrum up to values of
q large enough to quantify either a pure q−4 spectrum or one
involving a substantial q−2 additive term. This suggests that
the RS method is less likely to lead to artifacts than the DF
method.
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APPENDIX A: COMPARISON TO 2 DIMENSIONS

Let us consider differences and similarities between the
theory in one dimension vs two, beginning with a review of
the two-dimensional case whose bending energy is

E = Kc

2

∫∫ L

0
(
2u(x, y))2dxdy. (A1)

Straightforward Fourier transformation gives

E = Kc

2

∑
m

∑
n

|u(qmqn)|2(q2
m + q2

n)2L2

= KcL
2

2

∑
q

|u(q)|2q4, (A2)

and using the equipartition theorem then gives the well-
known result,

〈|u(q)|2〉 = kT

Kc

1

(Na)2

1

q4
, (A3)

where we have also used Na = L, where a is the linear spac-
ing between points and N is the number of points in a linear
direction with N2 being the total number of points. The nor-
malized spectrum is then given by Su(qm) in Eq. (9) with b2

given by Eq. (10).
Now let us compare the one-dimensional analogue

E = Kc1

2

∫ L

0

(
d2u(x)

d2x

)2

dx, (A4)

which immediately shows that Kc1 has the units of energy
times distance, unlike Kc in Eq. (A1) which has units of en-
ergy. Again Fourier transform of u(x)

E= Kc1

2

∫ L

0

(∑
m

−u(qm)q2
meiq

m
x

)(∑
n

−u(qn)q2
ne

−iq
n
x

)
dx

(A5)

= Kc1

2

∑
m

∑
n

u(qm)u(qn)q2
mq2

n

∫ L

0
ei(q

m
−q

n
)xdx

= Kc1L

2

∑
m

|u(qm)|2q4
m. (A6)

To conform to the two-dimensional case, we now set Kc1
= KcL. Then,

E = KcL
2

2

∑
m

|u(qm)|2q4
m. (A7)

Applying the equipartition theorem to each mode gives the
same result as Eq. (A3) and the subsequent renormalization
gives the same Su(qm) in Eq. (9) with b2 given by Eq. (10).

An alternative way to derive the one-dimensional ana-
logue is to assign an infinitely stiff bending modulus Kcy to
curvature in the y direction of a two-dimensional membrane
while retaining a finite Kcx in the x direction. Then,

E = 1

2

∫∫ L

0

(
K

1/2
cx

d2u(x, y)

d2x
+ K

1/2
cy

d2u(x, y)

d2y

)2

dxdy,

(A8)
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and the Fourier transformation gives

E = 1

2

∑
m

∑
n

|u(qmqn)|2(K1/2
cx q2

m + K
1/2
cy q2

n)2(L)2. (A9)

Any mode with non-zero qn has infinite energy and therefore
zero amplitude, so the equipartition theorem directly gives

〈|u(qm)|2〉 = kT

Kcx

1

(Na)2

1

q4
m

, (A10)

equivalent to Eq. (A3). These similarities support using the d
= 1 model for our study.

APPENDIX B: COMPARISON OF DISCRETE AND
CONTINUUM MODELS FOR FLUCTUATIONS

Figure 8 addresses the generation of lateral fluctuations
with the paracrystalline method versus the phonon method.
When Eq. (14) was used for the phonon method, the results
were too close to those for the paracrystalline method to be
visually distinguishable. Instead, the comparison in Figure 8
is to the continuum phonon case which replaces sin(qa/2)
in Eq. (14) with the long wavelength limiting qa/2 behavior.
Using the continuum phonon spectrum gives the artifact of a
discontinuous derivative at the Brillouin zone boundary com-
pared to the discrete phonon model and the paracrystalline
model.

The comparison of discrete and continuum phonon gen-
eration raises a similar issue regarding transverse fluctuations.
If one uses the discrete version for the bending energy, then

Sexact
u (q) = b2(a/2sin(qa/2))4. (B1)

As Figure 9 shows, this leads to a q−2 contribution when
analyzed for power law behavior. However, the coefficient
of the q−2 contribution is only 1/6 as large as the coeffi-
cient of the q−4 term, so it only exhibits noticeable devia-
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tions from q−4 behavior when q exceeds 1 nm−1 as shown in
Figure 9.

APPENDIX C: MEAN SQUARE DEVIATIONS IN d = 1
and d = 2

The mean square deviation 〈u2〉 plays a role in compar-
ing Sρ(q) with Su(q). It is useful to know how this quantity
depends upon the size of the system, in both d = 1 and d = 2
dimensions. In one dimension, using Eq. (5) and b′ = b/N

〈u2〉 ≡ 1

L

∫ L

0
|u(x)|2dx

=
∑
m

b2

N2

1

q4
m

= 2b2N2a4

(2π )4

N/2∑
m=1

1

m4
∼ N2. (C1)

The final sum depends only weakly upon N, going from 1 at
N = 2 to ζ (4) ≈ 1.0823, so 〈u2〉 scales as N2.

In two dimensions

〈u2〉 ≡ 1

(L)2

∫∫ L

0
|u(x, y)|2dxdy

= 4b2N2a4

(2π )4

N/2∑
n,m=1

1

(n2 + m2)2
∼ N2, (C2)

so the mean square amplitude diverges as the square of the
linear size N and L for both the d = 1 and d = 2 systems.

APPENDIX D: DERIVATION OF CONDITIONS FOR
VALIDITY OF THE DIRECT FOURIER METHOD

In this appendix, we first show that the direct Fourier
spectrum SDF

u (q) is equal to the true fluctuation spectrum
uexact(q) convolved with the lateral density structure factor
ρ(q) and multiplied by a constant. We further show that in
relevant limits this expression reduces to the additive relation
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(2) posited by Brandt et al. when ρ(q) is uncorrelated with
uexact(q).

SDF
u is defined by

SDF
u (q) ≡ N2

〈∣∣∣∣∣ 1

N

N∑
n=1

u(xn)e−iqx
n

∣∣∣∣∣
2〉

. (D1)

This can be written as an integral of the summand times N
delta functions

SDF
u (q) = N2

〈∣∣∣∣∣
∫ ∞

x=0
u(x)e−iqx

(
N∑

n=1

δ(x − xn)

)
dx

∣∣∣∣∣
2〉

.

(D2)
By the convolution theorem, the Fourier transform of this
product is the convolution of the individual transforms
of u(x) and the sum of delta functions, denoted w(x).
Consequently,

SDF
u (q) = N2

〈∣∣∣∣∣
∫ ∞

−∞
u(q ′)w(q − q ′)dq ′

∣∣∣∣∣
2〉

, (D3)

where w(q) is

w(q) =
∫ L

x=0

1

N

(
N∑

n=1

δ(x − xn)

)
e−iqxdx

= 1

N

N∑
n=1

e−iqx
n = ρ(q). (D4)

The ρ(q) in Eq. (D4) is exactly the lateral density fluctua-
tion components in Eq. (11). Thus, the direct Fourier spec-
trum SDF

u in Eq. (D1) is equal to the square of the convolution
of the true undulation spectrum u(q) with the lateral density
spectrum ρ(q), multiplied by a factor of N2. The analysis so
far has been identical to that done for non-equispaced time se-
ries by Ref. 23. Unfortunately, as noted in Ref. 23, deconvolv-
ing Eq. (D3) to get the u is not always feasible when working
with actual, noisy data.

We next demonstrate that Eq. (D3) reduces to Eq. (2) pro-
posed in Ref. 7, if lateral fluctuations are sufficiently small
and statistically uncorrelated with undulations. Crucially, if
either of these conditions is violated, the additive relation
Eq. (2) will not necessarily hold.

Substituting Eq. (D4) into (D3) and using the assumption
of periodic boundary conditions on u(q) gives

SDF
u (qm) = N2

〈 ∣∣∣∣∣∣
∑
q

p

u(qp)ρ(qm − qp)

∣∣∣∣∣∣
2 〉

. (D5)

Assuming the u and ρ modes are uncorrelated, then

SDF
u (qm) = N2

∑
q

p

〈|u(qp)|2〉〈|ρ(qm − qp)|2〉. (D6)

Separating the terms with ρ(0) factors, noting that ρ(0) = 1,
and recalling that |u(q)| = |u( − q)|,

SDF
u (qm) = N2

⎛
⎝〈|u(qm)|2〉 +

∑
q

p
>0,q

p
�=q

m

2〈|u(qp)|2〉

× (〈|ρ(qm + qp)|2〉 + 〈|ρ(qm − qp)|2〉)
2

)
. (D7)

In q regions where ρ does not have significant curvature and
can be approximated as the mean of ρ(q ± ε) for small ε, one
obtains

SDF
u (qm) ≈ N2

⎛
⎝〈|u(qm)|2〉 + 〈|ρ(qm)|2〉

∑
q

p
>0�=q

2〈|u(qp)|2〉
⎞
⎠

≈ Sexact
u (qm)(1 − 〈|ρ(qm)|2〉) + Sρ(qm). (D8)

In our emulations and likely for actual simulations, 〈|ρ(q)|2〉
is small compared to unity, so this reduces to Eq. (2).
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