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 The figures on pages S2-6 are 2D CCD images of hydrated, oriented egg sphingomyelin 

(ESM) collected as a function of temperature using the Rigaku RUH3R with Xenocs focusing 

collimator as described in the Materials and Methods in the main paper.  These data are the 

evidence that ESM remains in the ripple phase at all temperatures between 3 and 35 
o
C, since all 

of the images contain off-specular reflections characteristic of the ripple phase as shown in Fig. 1 

in the main paper.  While Fig. S1 is a summary figure of all of the ESM data images, Figs. S2-8 

are individual 2D CCD images at each temperature for viewing at higher resolution.  Units on 

images are detector pixels, q of 1.0 Å
-1 
≈ 650 pixels. 
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Figure S1.  2D CCD X-ray scattering data from oriented, hydrated ESM collected at the 

following temperatures:  Ripple phase A.  20 
o
C, after annealing at 60 

o
C for 2 hours, B. 15 

o
C, 

upon cooling from 20 
o
C, C. 10 

o
C, upon cooling from 15 

o
C, D. 3 

o
C, upon cooling from 10 

o
C, 

E.  30 
o
C, upon heating from 3 

o
C, F. 35 

o
C, upon heating from 30 

o
C, Fluid phase G. 45 

o
C, after 

annealing at 60 
o
C for 2 hours.  Red pixels indicate negative intensity after background 

subtraction. 
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Figure S2.  Oriented ESM at 20 
o
C in the ripple phase, collected after annealing at 60 

o
C for 2 

hours.  D-spacing is 64.9 ± 0.9 Å.  
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Figure S3.  Oriented ESM at 15 
o
C in the ripple phase, collected after cooling from 20 

o
C.  D-

spacing is 60.8 ± 0.8 Å. 
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Figure S4.  Oriented ESM at 10 
o
C in the ripple phase, collected after cooling from 15 

o
C.  D-

spacing is 60.8 ± 0.8 Å. 
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Figure S5.  Oriented ESM at 3 
o
C in the ripple phase, collected after cooling from 10 

o
C.  D-

spacing is 60 ± 0.2 Å. 



S5 
 

LAXS       WAXS  

 

 

 

 

 

 

 

 

 

 

 

Figure S6.  Oriented ESM at 30 
o
C in the ripple phase, collected after heating from 3 

o
C.          

D-spacing is 65 Å.  The light, diffuse scattering in the upper right hand corner of the WAXS 

image is due to excess water on the sample.   
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Figure S7.  Oriented ESM at 35 
o
C in the ripple phase, collected after heating from 30 

o
C.  D-

spacing is 65.8 ± 1.2 Å. 
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Figure S8.  Oriented ESM at 45 
o
C in the fluid phase, collected after annealing at 60 

o
C for 2 

hours.  At 45 
o
C, SPM is in the fluid phase, as evidenced by the absence of ripple reflections in 

LAXS and broad, diffuse scattering in WAXS.   D-spacing is 62.7 ± 1.1 Å.  
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 The figures on pages S7-10 are 2D CCD images of hydrated, oriented palmitoyl 

sphingomyelin (PSM) collected as a function of temperature using the Rigaku RUH3R with 

Xenocs focusing collimator as described in the Materials and Methods in the main paper.  These 

data are the evidence that PSM undergoes a phase transition from the gel phase to the ripple 

phase between 24 and 30 
o
C and then melts into the fluid phase between 37 and 45 

o
C as 

evidenced by reflections characteristic of these three phases.  While Fig. S9 is a summary figure 

of all of the PSM data images, Figs. S10-15 are individual 2D CCD images at each temperature 

for viewing at higher resolution.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S9.  2D CCD X-ray scattering data from oriented, hydrated PSM collected at the 

following temperatures:  Gel phase: A. 3 
o
C, upon cooling from 37 

o
C and equilibrating 

overnight at 3 
o
C, B. 15 

o
C, upon heating from 3 

o
C, C. 24 

o
C, upon heating from 15 

o
C, Ripple 

phase: D. 30 
o
C, upon heating from 24 

o
C,  E.  37 

o
C, upon heating from 24 

o
C,  Fluid phase: F. 

45 
o
C, upon heating from 37 

o
C. 
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Figure S10.  Oriented PSM at 3 
o
C in the gel phase, collected after cooling from 37 

o
C and 

equilibrating overnight at 3 
o
C.  D-spacing is 60 ± 0.2 Å. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S11.  Oriented PSM at 15 
o
C in the gel phase, collected after heating from 3 

o
C.  D-

spacing is 60.6 ± 0.3  Å. 
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Figure S12.  Oriented PSM at 24 
o
C gel phase with incipient ripple phase, collected after heating 

from 15 
o
C.  D-spacing is 61 ± 0.3 Å. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S13.  Oriented PSM at 30 
o
C in the ripple phase, collected after heating from 24 

o
C.      

D-spacing is 63.2 ± 0.2 Å. 



S10 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S14.  Oriented PSM at 37 
o
C in the ripple phase, collected after heating from 30 

o
C.  D-

spacing is 63.6 ± 0.8 Å. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S15.  Oriented PSM at 45 
o
C in the fluid phase, collected after heating from 37 

o
C.        

D-spacing is 61.9 ± 0.2 Å. 
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Figure S16.  Capillary D-spacings from literature: PSM, open black squares (Calhoun and 

Shipley, 1979a), open  red circles (Maulik and Shipley, 1996), open black stars (ThisWork, 

2018); ESM, solid green inverted triangles (Chachaty et al., 2005), solid blue triangles (Quinn 

and Wolf, 2009), solid cyan hexagons (Chemin et al., 2008), solid magenta star (Shaw et al., 

2012), solid black squares (ThisWork, 2018) .     
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Figure S17.  Form factor data obtained from x-ray diffuse scattering used to obtain the EDPs 

shown in Fig. 11 in the main paper.   
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Table S1.  Literature phase transition DSC results 

PSM    Heating rate  

Reference Pretransition TP (
o
C) TM (

o
C)  (

o
C/h) Material 

(Barenholz and 

Shinitzky, 1976) 
Probably 25 41.3 15 

1 

(Barenholz et al., 

1976) 
Yes  25 41.3 3-50 

1 

(Calhoun and 

Shipley, 1979a) 
Yes (small) 31 40.5 300 D,L* 

(Ahmad et al., 

1985) 
No --- 41.5 150/300 

1 

(Sripada et al., 

1987) 
No --- 41.0 300 D,L* 

(Maulik and 

Shipley, 1996) 
No --- 41.0 300 D,L* 

(Bar et al., 1997) Yes (small) 29.6 41.1 20 Lipitek 
(Ramstedt and 

Slotte, 1999) 
Yes (small) 28.9 41.1 18 D-erythro  

(Ramstedt and 

Slotte, 1999) 
No --- 39.9 18 Racemic, D,L* 

(Chemin et al., 

2008) 
No --- 45 120 D-erythro  

(Kodama et al., 

2012) 
Yes (small) 27.5 40.4 45 D-erythro  

(Jimenez-Rojo et 

al., 2014) 
Yes 30.9 41.7 45 Avanti 

(Nyholm et al., 

2003) 
Yes 27.4 40.9 30 D-erythro  

(Estep et al., 

1979) 
No --- 41 15 

1 

ESM      
(Calhoun and 

Shipley, 1979a) 
No ---  300 Avanti 

 (Ahmad et al., 

1985) 
No --- 39-40 150/300 Sigma 

(Mckeone et al., 

1986) 
No --- 37.7 30 Avanti 

(Chien et al., 

1991) 
No --- 37.5 300 Avanti 

(Mannock et al., 

2003) 
No --- 39.1 10 Avanti 

(Filippov et al., 

2006) 
No --- 38.8 20 Avanti 

(Chemin et al., 

2008) 
No --- 39.3 30 Avanti 

(Jimenez-Rojo et 

al., 2014) 
Yes? --- 38.1 45 Avanti 

(Garcia-Arribas et 

al., 2016) 
No --- 36 45 Avanti 

1
Possible stereospecificity is lacking 

*D,L = D-erythro, L-threo SM 
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Table S2.  Summary of structural parameters from PSM experiments  

 *Some assumptions, or calculated from other quantities, +Assumed tilt = 0 degrees.   

 

Table S3.  Summary of structural parameters from ESM experiments 

+Assumed tilt = 0 degrees.   

 T (°C) DPP  

(Å) 

AL (Å
2
) Volume 

(Å
3
) 

DB       

(Å) 

DC 

(Å) 

Tilt (°) d-space  

(Å) 

<SCD> 

(Calhoun and 

Shipley, 1979b) 
10  54.8*  38.4*  47* 4.14  

50  59.4*  35.4*   4.6  
(Maulik et al., 

1986) 
50 36.5 64.3* 1173*      

(Maulik and 

Shipley, 1996) 
29 48 41* 1103* 54*   4.2  

55 42 46* 1181* 51*   4.6  
(Li et al., 2000) 

(monolayer) 
10  46.3       

(Mehnert et al., 

2006) 
< 30      0   

48        0.258 

48        0.214 

(DPPC) 
 3 

(DPPC) 

--- 47.0 

(DPPC) 

1128 

(DPPC) 

48 

(DPPC) 

--- 34 

(DPPC) 

4.27(d20) 

4.03(d11) 

(DPPC) 

 

(Guler et al., 

2009) 
48 

(DPPC) 

 64 

(DPPC) 

1229 

(DPPC) 

38.4 

(DPPC) 

    

(Bunge et al., 

2008) 
40     16.2*   0.221 

(Bartels et al., 

2008) 

 

20  43.8+   19.8    

30     19.1    

45     16.2   ~0.25 

60     14.9   ~0.22 
(ThisWork, 

2018) 
3 --- 44.5 1099* 49.4 --- 30.4 3.95(d20) 

4.14(d11) 

 

(ThisWork, 

2018) 
45 37.6 64 1172* 36.6 13.3    

 T 

(°C) 

DPP  (Å) AL (Å
2
) Volume 

(Å
3
) 

DB       

(Å) 

DC 

(Å) 

Tilt 

 (°) 

d-space     

(Å) 

<SCH> 

(Chachaty et 

al., 2005) 
20       4.2  

50       4.6  
(Chemin et al., 

2008) 
20  40.2+     4.17  

55    ~48     
(Quinn and 

Wolf, 2009) 
20 42.1(ave)     0 4.21  

50 39.6(ave)    17.3    

(Leftin et al., 

2014) 
48  53.2 

(ave) 

 49.9(DB')  

(ave) 

17.0    

(ave) 

  ~0.32 

(ThisWork, 

2018) 
45 38.6 64 1187 37.1 13.6    
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