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Area Compressibility Moduli of the Monolayer
Leaflets of Asymmetric Bilayers from Simulations
John F. Nagle1,*
1Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
ABSTRACT Extraction from simulations of the area compressibility moduli of the monolayers in a bilayer is considered theo-
retically. A statistical mechanical derivation shows that the bilayer modulus is the sum of the two monolayer moduli, as is often
supposed but contrary to a recent study. Seemingly plausible assumptions regarding fluctuations are tested rigorously. Pros-
pects for future research are discussed.
SIGNIFICANCE It is important to describe the properties of both leaflets of generally asymmetric biomembranes. One
such property is the area compressibility modulus. This manuscript rigorously establishes the fundamental theory that
corrects a recent Biophysical Journal article. The theory is straightforward but substantial enough that it was not readily
apparent why the previous theory was incorrect. This is why this paper should be considered a new article and not just a
comment. Another reason is that this paper points to an alternative method, used only once previously, for extracting the
leaflet area compressibility modulus from simulations.
INTRODUCTION

Biomembranes are generally asymmetric, so increasing
attention has been paid to creating asymmetric model sys-
tems, both in vitro and in silico. Then, it is appropriate to
consider separately the physical properties of each of the
two monolayers in asymmetric lipid bilayers. Separating
some of those properties experimentally is difficult, so it
is appropriate to turn to simulations. Those simulations
that agree with the experiment for all the properties that
experiment can measure can then be considered for extract-
ing properties that experiments do not measure (1,2). The
property of interest in this article is the area compressibility
modulus. There are two well-known methods of extracting
the bilayer modulus from simulations. This article focuses
on the extraction of the individual monolayer moduli.

An area compressibility modulus k is generally defined as
follows:

k ¼ Aðvg=vAÞT ; (1)
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where A is the area, and g is the surface tension. This
modulus is essentially a spring constant. Assuming that
there is negligible coupling between the two monolayers,
j ¼ 1 and 2, each monolayer can be thought of as analogous
to a spring with modulus kj, and the bilayer would then be
two springs of equal length in parallel. The forces on the
springs would be Fj ¼ kj x, and the force on the two springs
would be F12 ¼ F1 þ F2 ¼ (k1 þ k2) x, which is then iden-
tified as k12 x. It would then follow by analogy from elemen-
tary mechanics of springs that the modulus k12 for a bilayer
is the sum of the monolayer moduli, which would be as
follows:

k12 ¼ k1 þ k2: (2)

Eq. 2 for symmetric bilayers is the conventional wisdom in
the lipid bilayer field that has often been used for symmetric
bilayers, usually in passing without even being remarked
upon (3–6).

In contrast to Eq. 2, a recent article (7) derived a rather
different equation as follows:

1

k12
¼ 1

2

�
1

k1
þ 1

k2

�
: (3)
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This equation has two highly unusual features. The first
comes from applying it to a symmetrical bilayer. Then, the
two monolayer moduli must be equal, k1 ¼ k2, so Eq. 3 re-
quires that each monolayer modulus must equal the bilayer
modulus k12. This unusual feature was specifically noted,
and a rationalization was provided (7). The second unusual
feature comes from considering a bilayer that is highly asym-
metric; for example, monolayer one might consist of gel
phase 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine
at room temperature, and monolayer two might consist of
highly fluid 1,2-dioleoyl-sn-glycero-3-phosphocholine. In
the limit when k1 is very much larger than k2, Eq. 3 predicts
that the bilayer modulus k12 is only twice the smaller mono-
layermodulus k2. This violates the definition in Eq. 1 because
the tension g1 to change the area of monolayer 1 should be
enormous compared to the tension g2 to effect the same
change to the area of monolayer 2. A macroscopic analogy
would be to construct a bilayer consisting of a sheet of rubber
on a sheet of steel and claim that the area compressibility is
unrelated to that of the steel. As the derivation provided for
Eq. 3 has gaps and makes unproven assumptions (7), it is
appropriate to return to basics.

After laying the statistical mechanical foundation in
Methods, the current article provides a rigorous derivation
of Eq. 2 in the Thermodynamic relations subsection. TheCor-
relations subsection reveals exactly which assumptions em-
ployed in (7) are incorrect for the case of uncoupled
monolayers considered there. It also allows for the consider-
ation of features not considered theoretically (7) that would
nevertheless affect that method of analyzing simulations.
The Discussion assesses the prospects for applying the small
patchmethod of (7), and attention is called to a different simu-
lation method that would not be subject to the same artifacts.
METHODS

The theoretical system

Consider a bilayer with fluctuating area A and average area<A>¼ A0. The

monolayer fluctuating areas A1 and A2 are necessarily constrained to be
FIGURE 1 A schematic of fluctuations of the patches in two m
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equal to the bilayer fluctuating area, A1 ¼ A2 ¼ A. The simulation method

proposed in (7) analyzes the fluctuating areas of small portions of each

monolayer j with fluctuating areas aj . For convenience, we will set the

average small areas <aj> on both monolayers to be the same value a0.

Of course, the fluctuating areas a1 and a2 are not generally equal unless

there is very strong coupling between the two monolayers. A schematic

of this setup is shown in Fig. 1.

Assuming that there is also no coupling between these small fluctuating

areas and between the remaining Bj ¼ Aj � aj areas in each monolayer

leads, via the equipartition theorem, to the monolayer moduli:

kj ¼ kBTa0

.
<
�
aj � a0

�2
> ; (4)

where kB is Boltzmann’s constant, and kBT is thermal energy. This equation

is well established as one of the two main ways to obtain k12 when bilayer

areas A and A0 replace aj and a0 (8,9). The interesting issue is how k12 is

related to the k1 and k2 that are obtained from Eq. 4. For this, we return

to the same statistical mechanics used to derive the equipartition theorem,

but we now have to realize that even if the two monolayers are uncoupled

locally, there is the global constraint A1 ¼ A2 ¼ A.

The formal description of the system begins by writing the basic

fluctuation energy for the small patches and also for the remaining large

areas Bj � B0:

Ebasic ¼ 1

2a0

X2
1

kj
�
aj � a0

�2 þ 1

2B0

X2
1

kj
�
Bj � B0

�2
: (5)

Of course, analysis of simulations would analyze many small patches

to obtain better statistics, but there is no loss of generality in a derivation

that considers small patches one at a time, each embedded in a reservoir

that consists of the remaining small patches considered as a group.

Also, the average area per molecule, suitably defined, is generally different

in the two monolayers, and those areas may not coincide with the areas of

the free-standing monolayers. Again, with no loss of generality, the areas of

the small patches are not those of lipid molecules but have been chosen for

notational convenience to contain an appropriate amount of material in each

monolayer such that the average small patch area a0 is the same in both

monolayers.

Each of the four terms in Eq. 5 has the conventional harmonic form for

the fluctuation energy with monolayer moduli kj. This equation looks like it

has four independent fluctuating variables, but there are only three because

aj þ Bj ¼ Aj ¼ A. Although this complicates the ensuing derivation, it is

crucial for explaining the difference between Eqs. 2 and 3. We therefore

replace (Bj � B0) by (A � A0) � (aj � a0) in Eq. 5. It will be convenient

to condense the notation in subsequent equations by writing the three
onolayers in a bilayer. To see this figure in color, go online.
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independent fluctuating variables as x¼ A� A0 and yj ¼ aj � a0. Then, Eq.

5 becomes the following:

Ebasic ¼ 1

2a0

X2
1

k
0
jy

2
j þ

1

2B0

X2
1

kj
�
x � yj

�2
: (6)

As is often the case in statistical mechanics, it is advantageous to

formally distinguish nominally identical terms such as has been done for

the kj
0 in the first term in Eq. 6 and to add terms to the basic energy as

follows:

Eadd ¼ w

2A0

x2 þ h12
2a0

ðy1 � y2Þ2 � 1

a0

X2
1

hjða� a0ÞðB�B0Þ:

(7)

The first term in Eq. 7 is crucial because it will enable finding the relation

between the bilayer k12 and the monolayer moduli kj by taking the

derivative of the partition function with respect to w and then setting

w¼ 0. The h12 term provides for the coupling between the two monolayers.

For h12 > 0, the coupling energy increases when the areas of the small

patches are correlated. With the usual volume conservation assumption,

such correlated fluctuations correspond to total bilayer thickness

fluctuations (sometimes called peristaltic modes); h12 > 0 therefore sup-

presses thickness fluctuations, whereas h12 < 0 enhances them. The hj
terms provide a kind of coupling between the small patches and the large

patches in the monolayers; even more importantly, that term will enable

finding the correlation functions that were previously presumed to be

zero (7).
Statistical mechanical derivation

The partition function for this system is defined as follows:

Z ¼
ZZZ

exp½ � bðEbasic þEaddÞ�dxdy2dy1; (8)

where b ¼ 1/kBT. The result of the integrations is as follows:

Z2 ¼ ð2pkT=B0Þ3
f0
�
f1f2 � f 23

�: (9)

Defining R ¼ (B0/a0) and r¼(B0/A0), the fs are as follows:

f0 ¼ ðk1 þ k2 þ rwÞ; (10)

and for j ¼ 1 and 2 as follows:

fj ¼ Rk
0
j þ kj þ 2hj þ Rh12 �

��
kj þ hj

�2 �
f0

�
; (11)

and

f3 ¼ Rh12 þ ððk1 þ h1Þðk2 þ h2Þ = f0Þ: (12)

The evaluation of the partition function in Eq. 8 was performed by first

grouping all the exponential factors involving x2 and x. Completion of

the square in the form (ax � c)2 � c2 provides a Gaussian x integral, which

gives the factor 2pkT/B0f0 in Eq. 9. The factors involving y1
2 and y1,

including those in the c2 factor left over from the x integration, were then

similarly treated, finally ending with a Gaussian integral over y2. The results

of the y1 and y2 integrations together give the remaining factor in Eq. 9.
RESULTS

Thermodynamic relations

Derivatives of the partition function in Eq. 9 give thermody-
namic quantities of interest. First, consider the average
energy as follows:

<E> ¼ �vlnZ=vb ¼ ð3 = 2ÞkBT; (13)
defined by the first equality in Eq. 13. The calculation using
Eq. 9 gives the second equality. This recovers the usual equi-
partition result for three classical harmonic degrees of
freedom.

The most interesting derivative is of ln Z with respect to
the parameter w. By definition of the partition function in
Eq. 8 and the definition of Eadd in Eq. 7, this derivative gives
the first identity in the following equation:

�2

�
vln Z

vw

�
0

¼ <ðA� A0Þ2 >
A0kBT

¼ 1

k12
¼ 1

k1 þ k2
: (14)

The second equality is just the identity for the bilayer
modulus k12 as in Eq. 4. The last equality is the result of
taking the derivative in Eq. 9 and then setting w ¼ 0 as
well as hj ¼ h12 ¼ 0; this returns the energy to the basic
terms in Eq. 6. Eq. 14 is a primary result that confirms
Eq. 2 which was suggested in the Introduction by analogy
to springs. This fully rigorous result proves that Eq. 3 is
incorrect.

When h12 is nonzero, there are corrections to Eq. 14,
which, however, are of order r and therefore vanish in the
small subsystem limit a0<<A0. This is consistent with
the infinitely strong h12 limit, which is independently
calculable because then y1 ¼ y2 is constrained and the
tightly coupled monolayers reduce to a single layer with
modulus k1 þ k2. However, the h12 coupling between the
monolayers is far from innocuous for the interpretation
of small patch fluctuations. These fluctuations are obtained
by taking a derivative with respect to kj

0 and setting
hj ¼ 0 ¼ w, designated by 00 in the first term in the
following equation:

�2

 
vln Z

vk
0
1

!
00

¼ <ða1 � a0Þ2 >
a0kBT

¼ 1

kapp1

¼ 1

k1 þ h12
: (15)

The first equality in Eq. 15 follows simply from Eqs. 7 and
8. The second equality in Eq. 15 defines the apparent mono-
layer modulus k1

app that the small patch simulation method
would report. The last equality in Eq. 15 shows the result of
the calculation using Eq. 9. Importantly, k1

app is not the true
monolayer modulus k1 but becomes k1þ h12. Encouragingly,
one could determine h12 ¼ 1/2 (k1

app þ k2
app � k12) and

thence obtain k1 and k2 using the final equality in Eq. 15.
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However, this assumes that the only coupling is between
patches on opposite monolayers.

Although the hj terms might appear to provide the in-
plane coupling equivalent to the h12 out of plane term, there
is a difference that makes the hj terms unsatisfactory for
determining k1 and k2. For either sign of hj, some fluctua-
tions decrease the hj energy term, which even leads to insta-
bility of the system for modest values of hj. However, it may
be noted that these terms decrease k1

app and k12 but only pro-
portional to hj

2 and to r¼ a0/A0. A better model for in-plane
coupling might involve adding terms like (a�a0)

2(B�B0)
2

to the energy, but this would introduce quartic terms, which,
even if calculable, would complicate an already complicated
derivation of the partition function.
Correlations

It is interesting to see exactly how plausible assumptions
for correlations between the patches fail because of the
A1¼ A2¼ A constraint. Let us begin with the following iden-
tity, alluded to in (7), that follows from A ¼ 1/2 (A1 þ A2):

<ðA� A0Þ2 > ¼ <

 
1

2

X2
1

	�
aj � a0

�þ �Bj � B0

�
!2

> :

(16)
The left-hand side is just A0kBT/k12. Expanding the right-
hand side gives the following:

<ðA� A0Þ2 > ¼ 1

4

X
j

�
<
�
aj � a0

�2
> þ <

�
Bj � B0

�2
>
�

þ Q1 þ Q2 þW;

(17)
where
Qj ¼ 1

2
<
�
aj � a0

��
Bj �B0

�
> ; (18)
and
W ¼ 1

2
h½ða1 � a0Þþ ðB1 �B0Þ�½ða2 � a0Þþ ðB2 �B0Þ�i:

(19)
W was previously assumed to be zero (7), but it is trivially
equal to 1/2 <(A � A0)

2> by inspection. The authors of
Doktorova et al. (7) have acknowledged this correction to
W in a recent erratum (15) although not to the subsequent
corrections in the next paragraph.

Eq. 17 can now be rewritten as follows:
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<ðA� A0Þ2 > ¼ 1

2

X
j

�D�
aj � a0

�2EþD�Bj � B0

�2E�
þ 2Q1 þ 2Q2:

(20)

If there is no specific coupling between patches, application
of Eq. 4 shows that <(aj – a0)

2> þ <(Bj – B0)
2> ¼

A0kBT/kj, so Eq. 20 can be further rewritten as follows:

A0kBT

k12
¼ 1

2

�
A0kBT

k1
þA0kBT

k2

�
þ 2Q1 þ 2Q2: (21)

If Q1 þ Q2 were zero, then this would be a derivation of
Eq. 3. However, the Qj are straightforwardly determined
to be nonzero by taking derivatives of the partition function
with respect to hj. The result for Q1 is as follows:

Q1 ¼ � k2
k1

kBTA0

4ðk1 þ k2Þ; (22)

and the result for Q2 simply exchanges the indices 1 and 2,
so Q1 þ Q2 is not zero. The product Q1Q2 depends only
upon the sum k1 þ k2, but the ratio Q1/Q2¼(k2/k1)

2 shows
that the Qj have quite different values for asymmetric bila-
yers with larger values of Qj for the softer monolayer than
for the stiffer one. Finally, combining 2Qj in Eq. 22 with
the kj terms in Eq. 21 gives, for both j ¼ 1 and 2, the result
1/2A0kBT/(k1 þ k2), thereby giving the following:

A0kBT

k12
¼ 1

2

�
A0kBT

k1 þ k2
þ A0kBT

k1 þ k2

�
; (23)

which again confirms that the bilayer modulus k12 is the sum
of the monolayer moduli as in Eq. 2. Fig. 2 plots the terms in
Eq. 21 as the relative stiffness of the two monolayers varies.

It is interesting that the simple constraint that both mono-
layers have the same area has such a large effect on the Qj

and W correlations. Compared with a system consisting of
a single monolayer, W is not defined, and the only defined
Q1 is zero as one would expect from the assumption that
the small patch is uncoupled from the large patch reservoir.
It is also interesting to note that W þ Q1þQ2 ¼ 0 for sym-
metric bilayers but only for symmetric bilayers.
DISCUSSION

The difference between the derivations of Eqs. 2 and 3 is the
treatment of the crucial constraint that the monolayers in a
bilayer must have the same total area. Although the deriva-
tion of Eq. 3 in the previous subsection recognizes this
constraint, it then had to make assumptions about various
correlations. The derivation of Eq. 2 makes no such assump-
tions and actually calculates the correlation functions and



FIGURE 2 The terms in Eq. 21 are normalized to A0kBT/(k1 þ k2).

The algebraic sum of the four terms on the right-hand side of Eq. 21 equals

1/k12 ¼ 1 because k1 þ k2 is normalized to 1. To see this figure in color,

go online.
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shows that they do not agree with the assumptions in the
derivation of Eq. 3. The derivation of Eq. 2 confirms what
has been assumed for a long time, at least for symmetric
bilayers.

Although Eq. 3 is incorrect, it is a reasonable prospect
that the fluctuations in small patches will reveal differences
in the monolayer moduli in asymmetric bilayers. If there is
no coupling of the patches with the remainder of the bilayer,
then the rigorous theory in this article shows that this
analysis will give the monolayer moduli quantitatively.
However, if the sum of the apparent monolayer moduli ob-
tained from small patches k1

app þ k2
app does not equal the

well-determined bilayer modulus k12, then there must be
coupling. If the coupling is only between patches on oppo-
site monolayers, then the analysis using h12 allows the
extraction both of the coupling and the individual kj. One
could also have equality with coupling if the in-plane
coupling competes with the h12 coupling, but we do not
have a good theory for the effect of coupling within each
monolayer.

The simulations previously reported (7) gave k1
app þ

k2
app ¼ 2k12, indicating strong coupling. However, the

method employed there to convert area fluctuations to thick-
ness fluctuations may have been flawed by the assumption
that the volume was constant in a region consisting of
only about half the hydrocarbon region as it was determined
by the location of specific methylenes. A similar assumption
has been found to be false in a current analysis of the
Poisson ratio (unpublished data).

Given these problems with the small patch analysis
method, it is appropriate to consider a second method that
stems from the second method that has routinely been em-
ployed to obtain the bilayer modulus k12. This second
method simply plots the area A versus surface tension g to
obtain the area compressibility modulus directly from its
definition in Eq. 1. This method was noted in (7), but it
was apparently not realized that it could also be used to
obtain the kj moduli separately. For each value of g in the
simulation, one would first calculate the average lateral
pressure profile P(z) ¼ �g(z) of the bilayer (9–11). The in-
tegral of g(z) along z across the whole bilayer is the value of
g. The idea is that one may also choose to integrate only
over each monolayer separately to obtain g1 and g2. Then,
one would calculate the separate moduli as follows:

kj ¼ � A
�
vgj

�
vA
�
T
; (24)
using the average <A> for each value of gj. The only
assumption in this method, as in the proposed method (7),
is that it makes sense to separate the bilayer into two mono-
layers. One might argue that it does not make sense to apply
it to bilayers with fully interdigitated hydrocarbon chains,
but it does appear to be a reasonable conceptual division
for most bilayers that have only mini-interdigitation (12)
of the monolayers near the center of the bilayer. Further-
more, one does not have to just separate k12 into two mono-
layer values. Indeed, k12 has already been further refined
into a modulus k12(z) that varies with depth z for a coarse-
grained simulation of a symmetric bilayer (13). When
applied to an asymmetric bilayer, that method would pro-
vide an even more detailed view than just obtaining k1 and
k2. As noted (7), this second method requires more simula-
tions at different surface tensions, and the lateral pressure
profiles would probably be subject to more noise. However,
this method would not be subject to the difficulties involved
in the small patch method.

Finally, it may also be noted that (7) tackled the thorny
issue of the relation between the area compressibility
modulus KA (¼k12) and the bending modulus KC. It focused
on the appropriate thickness t to use in the following:

KC ¼ 1

24
t2KA; (25)
rather than on the factor of 24 that comes from the polymer
brush formulation that assumes independent monolayers
(6). The choice of the total hydrocarbon thickness for t
has worked rather well (2,6). However, the most significant
exception was found when cholesterol was added to lipid bi-
layers, and a large change in the definition of t was proposed
(14). In agreement with (7), further analysis using reliable
determinations of both KA and KC, both from experiment
and from simulations, are indeed needed to refine what
effectiveness thickness t is appropriate to relate the mechan-
ical properties of specific lipid bilayers.
Biophysical Journal 117, 1051–1056, September 17, 2019 1055
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CONCLUSIONS

The statistical mechanical relation of the leaflet area
compressibility moduli to that of the bilayer has been rigor-
ously derived. Coupling between the two leaflets has been
incorporated theoretically and that can be addressed using
the small patch simulation method. However, an alternative
method is likely to be superior for obtaining more, and more
reliable, information about the area compressibility of
asymmetric membranes.
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