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Mechanical properties of lipid bilayers: a note on
the Poisson ratio

M. Mert Terzi, † Markus Deserno * and John F. Nagle *

We investigate the Poisson ratio n of fluid lipid bilayers, i.e., the question how area strains compare to

the changes in membrane thickness (or, equivalently, volume) that accompany them. We first examine

existing experimental results on the area- and volume compressibility of lipid membranes. Analyzing

them within the framework of linear elasticity theory for homogeneous thin fluid sheets leads us to

conclude that lipid membrane deformations are to a very good approximation volume-preserving, with

a Poisson ratio that is likely about 3% smaller than the common soft matter limit n ¼ 1
2
. These results are

fully consistent with atomistic simulations of a DOPC membrane at varying amount of applied lateral

stress, for which we instead deduce n by directly comparing area- and volume strains. To assess the

problematic assumption of transverse homogeneity, we also define a depth-resolved Poisson ratio n(z)

and determine it through a refined analysis of the same set of simulations. We find that throughout the

membrane’s thickness, n(z) is close to the value derived assuming homogeneity, with only minor

variations of borderline statistical significance.

I. Introduction

Biomembranes and lipid bilayers exhibit many interesting
mechanical properties. Much emphasis has been placed on
the bending modulus KC, which is important for describing the
flexural rigidity of membranes, and the area modulus KA, which
pertains to in-plane compression or stretching. These two
are in fact conceptually related, but the details depend on
additional microscopic assumptions, leaving the precise connection
open to debate.1–5 Since local surface geometry is described by two
independent curvatures, the bending modulus KC, which penalizes
mean curvature, has a partner KG, which quantifies the cost of
Gaussian curvature. However, due to the Gauss–Bonnet theorem the
Gaussian modulus usually only matters when the topology changes
(say, pore opening or fission/fusion events), and for the same reason
it is also very difficult to measure.6–10

A mechanical property of lipid membranes that has seen
considerably less attention is their Poisson ratio, n. This is the
quantity that allows us to address the question: what relative
area change DA/A results if we impose a relative thickness
change DD/D? Within linear elasticity, the ratio between these
two quantities, multiplied by �1

2
, is called the Poisson ratio.

It is frequently assumed in biophysics, often without noting
it explicitly, that volume remains constant upon membrane

deformation,4,11–21 but a few studies have let open the possibility
that this is not the case for lipids near protein inclusions and
looked into it,22,23 although not in the way we do here. Since the
volume strain uV = DV/V can be expressed, to lowest order, as
the sum of the area strain uA = DA/A and the thickness strain
uD = DD/D, one has

uV = uA + uD. (1)

Incompressibility (i.e., DV = 0) enforces the ratio of uA to uD to
be �1, which then implies a Poisson ratio of n ¼ 1

2
.

Any sizable deviation from the constant volume assumption
could, of course, have consequences for biophysical studies that
in one way or another rely on a membrane’s elastic properties.
For instance, a lipid volume change would also occur in
membranes containing mechanosensitive channels and could
affect their gating when they are activated by a mechanical
surface tension.15,16,18,19 The passive permeability of such
membranes would also increase due to both thinning of the
membrane and lower mass density, but not necessarily by the
same amount due to the two effects.24

Experimentally, it is difficult to obtain the Poisson ratio by
directly measuring both DA and DD. The continuum mechanics
relations developed in Section II show us how to obtain n using
other quantities from experiment and simulation, namely, the
isothermal area compression modulus KA already mentioned,
and the isothermal bulk modulus KV along with the membrane
thickness D. However, there is also ambiguity in the parameters that
occur in the continuum mechanics model. Fortunately, simulations
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obtain data that remove this ambiguity. The data are reviewed in
Section III along with results for n.

This continuum mechanics approach assumes that bilayers
are homogeneous. However, lipid membranes exhibit structure
that rapidly varies in the transverse z-direction. We know of no
experimental data that can test whether this heterogeneity
effects a conceivably depth-dependent Poisson ratio n(z); but,
as is often the case, simulations can address properties not
accessible to experiment. In Section IV we therefore define n(z) and
determine it from a refined analysis of the same set of simulations.

II. Relations for the Poisson ratio n for
a fluid membrane

The harmonic free energy density f of an elastic body can
generally be written as

f ¼ 1

2
lijkluijukl ; (2)

where uij is the strain tensor and repeated indices are summed
over the three spatial dimensions. After exploiting a membrane’s
in-plane translational and rotational symmetry, as well as its
fluidity, this reduces to25–27

f ¼ 1

2
lAuA2 þ

1

2
lzuz

2 þ lAzuAuz; (3)

where the notation has been simplified by introducing lA = lxxxx =
lyyyy, lz = lzzzz, lAz = lxxzz, uA = uxx + uyy and uz = uzz. It has
previously been assumed that lA = lz, because it simplifies some
calculations.25 In this paper we instead allow for an elastic
asymmetry

a :¼ lz � lA
lA

; (4)

whose value we then estimate.
Eqn (3) neglects a term that accounts for lipid tilt; but such a

deformation involves non-diagonal strains, like uxz, that appear
not to be of concern for Poisson ratio considerations. Likewise,
the elastic free energy of lipid membranes also contains a term
proportional to a trans-bilayer lateral pre-stress, s0(z);11 but
since the zeroth moment of this pre-stress vanishes, and none
of our deformations are z-dependent, it also drops out of all
subsequent considerations.

To obtain the Poisson ratio n in terms of the elastic moduli
entering eqn (3), one fixes a value of uz and determines the
ensuing uA that minimizes f,

0 ¼ @f

@uA

� �
uz

¼ lAuA þ lAzuz; (5)

which gives

n :¼ �uA

2uz
¼ lAz

2lA
: (6)

It proves convenient to re-express eqn (3) in terms of the Poisson
ratio n and the elastic asymmetry a; two equivalent forms,

which differ in the choice of independent strains, will be
used:

f ðuA; uzÞ
lA

¼ 1

2
uA

2 þ 1

2
ð1þ aÞuz

2 þ 2nuzuA; (7a)

f ðuA; uVÞ
lA

¼ 1

2
uV

2 þ a
2
ðuV � uAÞ2

þ ð2n � 1ÞuAðuV � uAÞ:
(7b)

Next we obtain expressions for the experimentally determined
moduli. The area modulus KA is defined by

min
uz

Df ðuA; uzÞf g ¼ 1

2
KAuA

2; (8)

where D is the thickness of the membrane. Enforcing the mini-
mization condition via eqn (7a) leads to

(1 + a)uz + 2nuA = 0. (9)

Solving this equation for uz, inserting its value into eqn (7a),
and combining with eqn (8), we find

KA

DlA
¼ 1þ a� 4n2

1þ a
: (10)

Similarly, the experimentally determined bulk modulus KV is
defined by

min
uA

f ðuA; uVÞf g ¼ 1

2
KVuV

2: (11)

Enforcing the minimization condition, this time via eqn (7b),
leads to

(1 + a � 4n)uA � (1 + a � 2n)uV = 0. (12)

Solving this equation for uA, reinserting into eqn (7b), and
combining with eqn (11), we find

KV

lA
¼ ð1þ aÞ � 4n2

aþ 2ð1� 2nÞ: (13)

For subsequent analysis of experimental and simulation
data, it is convenient to consider the ratio between a membra-
ne’s area- and bulk modulus. Dividing eqn (10) by eqn (13)
eliminates the less convenient modulus lA and gives

r :¼ KA

DKV
¼ 2ð1� 2nÞ þ a

1þ a
: (14)

Notice the occurrence of the membrane thickness D, which
arises for dimensional reasons.

Rearranging eqn (14), we can also expresses the Poisson
ratio n in terms of two in principle measurable elastic modulus
ratios, r and a:

n ¼ 1

2
� r

4
þ a

1� r
4

: (15)

In passing, it is interesting to note that eqn (14) allows n to
be larger than 1/2 for small r when a is positive. Although this
may seem surprising in view of the well-known limit that
indeed holds for isotropic elastics, it should be appreciated
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that there are no bounds on n in the much larger universe of
anisotropic elastic materials.28 However, our system is constrained
to |2n| r 1 + a in order to satisfy the stability requirement that
both KA and KV be non-negative in eqn (10) and (13).

We finally obtain the relative volume change uV resulting
from a given area strain uA. Setting (qf/quV)uA

= 0 in eqn (7b)
leads us to the associated strain ratio s,

s :¼ uV

uA
¼ 1þ a� 2n

1þ a
: (16)

In the next section we will determine values for the two
ratios r and s, from which we then proceed to calculate the
observables of interest: Poisson ratio n and elastic asymmetry a.
It is hence convenient to express the latter set directly in terms
of the former:

n ¼ 1� s

2ð1þ r� 2sÞ
; (17a)

a ¼ 2s� r
1þ r� 2s

: (17b)

III. Data and results for homogeneous
fluid membranes

The definition of the modulus ratio r in eqn (14) involves the
area expansion modulus KA, the bulk modulus KV, and the
membrane thickness D. Experimental work has established
that KA depends remarkably weakly on the specific lipid under
study; values around (250 � 50) mN m�1 are typical.1,14,29,30

This range of values is encompassed in the first column of
Table 1 for the four experimental rows.

Because isotropic pressure P and its conjugate thermo-
dynamic variable V are relatively less interesting than the more
relevant canonical surface pressure p and surface area A pair,
fewer experimental results exist for a lipid bilayer’s bulk modulus
KV = �V(qP/qV)T than for its area modulus KA = �A(qp/qA)T.
However, the value 1.3 GPa has been measured for KV for DPPC
(1,2-dipalmitoyl-sn-glycero-3-phosphocholine) bilayers in the
fluid phase at T = 47.4 1C.31 A somewhat larger value of 2.2
GPa has been reported for the shorter chain length lipid DMPC

(1,2-dimyristoyl-sn-glycero-3-phosphocholine) in its fluid phase at
lower temperatures near T = 30 1C.32 Although another study of
DPPC under pressure did not quote a value for KV,33 from their
Fig. 1 we estimate KV = 0.9 GPa in the fluid phase of DPPC at
T = 45.13 1C and a smaller value of KV B 0.6 GPa closer to the
main transition TM = 41.4 1C. It is well known that there is
anomalous softening of the bending modulus KC in the fluid
phase as the main transition is approached34,35 and an even more
pronounced softening has recently been reported for the tilt
modulus Ky.

36 The few data for KV suggest a similar but weaker
trend. A non-lipid bilayer (and non-anomalous) comparison is
n-hexadecane, for which KV is about 0.6 GPa at T = 45 1C.37

Although hexadecane has similar hydrocarbon chains as DPPC, it
is an isotropic liquid with more gauche–trans disorder than
DPPC,38 so its bulk modulus would be expected to be smaller.
On the other hand, nearly 30% of the volume of lipids is in the
headgroup region, which, being surrounded by water, is not likely
to be compressible beyond that of the water. This would not
change DV, but it would reduce the effective compressible volume
V factor in KV, thereby reducing its relevant value by 30%, closer
to that of hexadecane. Based on all these considerations, we will
consider the range of experimental estimates for KV shown in
Table 1.

The D dependence in r, necessitated by dimensionality,
causes some conceptual difficulties, because membrane thickness
is microscopic, and how to define a geometric reference surface
within a molecular-scale object is neither obvious nor in practice
unique.12 Two frequently encountered reference surfaces in the
context of membrane bending are a leaflet’s pivotal plane,39 at
which bending leads to no area strain, or its neutral surface,40 at
which bending and stretching energies decouple. However, these
surfaces are introduced to conceptually localize strain or simplify
elastic energies, not to serve as definitions of bilayer thickness—
and hence they are not usually used for this purpose. A more
common way to specify a membrane’s transverse dimension is
the Luzzati thickness DB, which refers to the surface that arises
when one imagines expelling all water from the headgroup
region and rearranging the lipids to form a gedanken sheet of
pure lipid. This definition approaches the problem thermo-
dynamically, in the spirit of a Gibbs dividing surface. Typically,
DB has values around 3.6nm.41 An alternative structure-based
definition is the hydrocarbon thickness, sometimes denoted
2DC. It refers to the dividing surface for the methylene groups
on the lipid tails. This choice identifies a bilayer with its
hydrophobic lipid tail region; its value is about 2.7 nm for
typical bilayers.12 In our subsequent analysis we will examine

Table 1 Values of area modulus KA, bulk modulus KV, membrane thick-
ness D, modulus ratio r from eqn (14), strain ratio s from eqn (16), deviation
of the Poisson ratio n from its usually assumed limit of 1/2 from eqn (17a),
and the elastic asymmetry a from eqn (17b), for a select set of cases
discussed in the text

Case
KA

[mN m�1]
KV

[GPa]
D
[nm]

r
[10�2]

s
[10�2]

1
2
� n
½10�2�

a
[10�2]

Exp 1a 250 1.3 3.6 5.3 3.0 1.2 0.7
Exp 1b 250 1.3 2.7 7.1 4.0 1.6 0.9
Exp 2 200 2.0 3.6 2.8 3.0 �0.1 3.3
Exp 3 300 0.6 3.6 14.0 3.0 5.0 �7.3

Sim 1 138 1.3 3.9 2.7 3.0 0 3.4
Sim 2a 277 1.3 3.8 5.6 3.0 1.3 0.4
Sim 2b 277 1.3 2.8 7.6 4.0 1.8 0.4

Fig. 1 Geometry and coordinates in a stress-free and a laterally stressed
piece of flat material.
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both the Luzzati- and the hydrocarbon thickness, since they
have different points in their favour. The Luzzati definition
bridges between continuum theory and molecular reality with-
out having to make a potentially arbitrary structural choice. The
hydrocarbon thickness makes such a choice, but it is not
arbitrary: simulations have shown that headgroup volume
remains essentially constant with area strain,42 consistent with
it being immersed in water, and so one might not expect it to
support anything other than n ¼ 1

2
. Hence, the hydrocarbon

thickness focuses on that part of the bilayer for which we would
expect a ‘‘nontrivial’’ Poisson ratio.

Turning to simulations, row Sim 1 in Table 1 shows results
from the only simulation43 we could find that reported results
for KA and D, as well as data from which KV can be extracted as
we now show. What was reported using the CHARMM27r force
field was a bulk modulus for the entire system of Ksys = (1.5 �
0.3) GPa. As nearly half (f = 0.42) of the system consisted of
water, its contribution to the overall modulus must be taken
out in order to arrive at the bulk modulus of the bilayer alone.
Deviating slightly from the procedure proposed in ref. 43, we
note that the volume strains of the water- and membrane-phase
must add, which implies (in analogy to a springs-in-series
argument)

1� f
KV

¼ 1

Ksys
� f
Kwater

: (18)

Taking the value Kwater = 2 GPa for the bulk modulus of TIP3P
water from another CHARMM27r simulation,44 we then find
KV = 1.3 GPa for the bilayer in very good agreement with
experiment.

Let us now turn to the strain ratio s. We are not aware of any
experimental measurements of this variable, but we have been
able to extract s from the simulation data (and later simulation
trajectories) of Braun et al.,42 who used the united atom force
field GROMOS 43A1-S345 to simulate flat bilayers (288 DOPC
(1,2-dioleoyl-sn-glycero-3-phosphocholine) lipids, 9428 SPCE
water molecules) at T = 29.85 1C under fixed (projected) area A.
Of the several areas simulated we have picked five, equally spaced
from 0.64 nm2 to 0.72 nm2, whose surface tensions g had also
been determined. The volumes of the total lipid, VL, as well as of
the hydrocarbon region alone, VC, were obtained using a simple
procedure46 incorporated in the SIMtoEXP analysis software,47

and values were reported in the Supplementary Material of Braun
et al.42 As the simulation conditions are identical to those for
eqn (16), we obtained the value of s from a plot of ln V versus ln A.
Using the entire lipid volume VL corresponds to choosing
the Luzzati thickness DB as the membrane thickness; it gives
q(ln V)/q(ln A) = s = 0.0297 � 0.0041. Using only the hydrocarbon
volume corresponds to choosing the hydrocarbon thickness; it gives
s = 0.0399 � 0.0055. The area modulus KA and the thicknesses were
also reported;42 their values are shown in the Sim 2a and Sim 2b
rows of Table 1.

Table 1 illustrates ranges for the values of the KA, KV, and D
data discussed in this section, and these give the values in the
column of the modulus ratio r. For the D column, the smaller
values are the hydrocarbon thicknesses and the larger values

are the Luzzati thicknesses. The values in the s column come
from the previous paragraph, and they correspond to the choice
of D. The Poisson ratio is close to 1/2, so Table 1 shows the
difference 1

2
� n. That difference is largest for Case Exp 3 which

puts KA at its upper range and KV at it lower range, and the
difference even becomes slightly negative for the opposite end
of the KA and KV ranges as seen for Case Exp 2. Using hydro-
carbon thickness versus Luzzati thickness makes less difference
as seen by comparing Cases Exp 1a and 1b and between Sim 2a
and 2b; that is due to a compensating effect of s. Based on these
four cases we suggest that 1

2
� n � 0:015, a 3% deviation from

the usual assumption that n ¼ 1
2
. The strain ratio s directly gives

the relative volume change uV for a given area strain uA. Lipid
bilayers typically rupture when the area strain uA exceeds 6%,48

so relative changes in volume would be less than 0.2% for Cases
Exp 1a and 1b and Sim 2a and 2b.

The final column in Table 1 provides, to the best of our
knowledge, the first estimate for the magnitude of the elastic
asymmetry a from eqn (4), which quantifies the extent to which
the diagonal elements lA = lxxxx = lyyyy and lz = lzzzz of the
general elastic from eqn (3) differ from one another because a
membrane’s anisotropy breaks full rotational symmetry. The
values for Cases Exp 1a and 1b and Sim 2a and 2b suggest that
lz is about 0.5% larger than lA. However, uncertainties in the
ratios r and s are consistent with a = 0, so we simply conclude
that any symmetry breaking is quite small.

It may also be noted that a coarse-grained simulation study
obtained elastic ratios,49 but it does not appear to relate those
results to the classical Poisson ratio defined in Section II.

IV. Inhomogeneous Poisson ratio

A fluid lipid bilayer is laterally uniform, but along the normal
direction it exhibits significant inhomogeneity, for instance in
terms of its structure,12 or lateral pressure profile,11,50,51 or
even its lateral area modulus profile.27 This need not imply that
results using homogeneous elasticity theory are wrong; but it
behooves us to examine this issue, especially since any sizable
variation with position could have implications for other theories
which instead assume that n is uniform (and close to 1/2). It is
furthermore of interest whether it is possible to operationally
ascribe a local Poisson ratio to characteristic subregions of the
bilayer.

A first and relatively straightforward step in this direction is
to recognize the elastic difference between a membrane’s head
group region compared to the hydrocarbon tails. As noted above,
a detailed analysis of molecular volumes indeed indicates that
lipid head group moieties essentially do not change their volume
upon bilayer stretching.42 If so, the volume change is confined to
the hydrocarbon tails, and so we expect the bilayer-averaged value
of 1

2
� n to be larger when the focus is only on the hydrocarbon

region as shown in Table 1 by the cases Exp 1a and 1b and by
Sim 2a and Sim 2b.

Let us now strive to go beyond a binary division between
heads and tails and define a truly local Poisson ratio n(z). As we
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know of no experiment that has the sensitivity to measure
inhomogeneity in the Poisson ratio at such a small scale, we
once more turn to simulation and propose a refined way to
analyze the previous set of simulations.42

At first glance, it might seem promising to examine how
much the mean positions zm of various molecular groups ‘m’
move as the membrane strain varies. Such an approach would
be flawed, though, because the overall distribution of material
varies as the molecular conformations perforce vary. This is
especially easy to understand with regard to the terminal methyl
groups, because a surprisingly larger fraction of the chain ends
turn back towards the headgroup region when chain packing
becomes more jumbled at larger area per lipid.52,53 Indeed, the
simulations42 readily show that the proportion of terminal
methyls in a central slab of thickness 1 nm decreases when
the membrane area A is increased.

Our way to address this issue is by taking the focus away
from individual lipids, or specific locations within them, and
instead consider the total amount of material, no matter of
what provenance, within specified regions of space. Consider
therefore material slabs of thickness 2L(M) centered on the
bilayer midplane, where the argument M identifies how much
material is contained within the slab. If we now consider
different areas Ai, the constraint of fixed M then yields the
associated values of Li. In the simulations different areas Ai

were enforced by imposing a biaxial strain, and hence the
condition required by eqn (9) which gives:

�2n12ðMÞ
1� d

¼ uD

uA
¼ DLðMÞ
hLðMÞi

�
DA
hAi (19a)

¼ L1ðMÞ � L2ðMÞ
L1ðMÞ þ L2ðMÞ

�
A1 � A2

A1 þ A2
: (19b)

To implement eqn (19b), we must define how much material is
in a slab. Consider for instance the hydrocarbon region. Even
though it is dominated by methylene groups, there are also
terminal methyls and the methine groups at the double bonds
in DOPC. We assume that all of these additively contribute to
M, but in different proportions and with different weights. For
the Poisson ratio, which focuses on volumes, the appropriate
weight for each component is its volume. As already mentioned,
component volumes have been previously reported for each
simulated area.42 Since differences in the ratios of the compo-
nent volumes, shown in Table S1 of that paper, have little area
dependence, we used the same weights for all areas—relative to
a weight of unity for methylenes: wCH3

= 1.969, wCH1
= 0.890,

wPO4
= 1.229, w2(COO) = 2.899, wGly = 2.425, wChol = 5.683 and

wwater = 1.118. We emphasize that we only fix the relative
weights; fixing the component volumes would perforce require
n ¼ 1

2
.

Instead of just calculating Poisson ratios for central slabs, let
us proceed now to a method that allows using simulations at
many areas to obtain a Poisson ratio as a function of z.

Therefore, we can read our defining equation in a localized
version,

�uDðzÞ
uA
¼ 2nðzÞ

1þ a
; (20)

where n(z) is the depth-dependent value of the Poisson ratio,
and where the z-coordinate must be defined via a ‘‘material
perspective’’ analogous to the one outlined above.

To be more specific, consider one of the simulated areas, Az,
to be a reference area and focus on a thin slice dz within the
bilayer. For a different simulated area, Az, we can write the local
z-strain as

uDðzÞ ¼
dz� dz

ðdzþ dzÞ=2 ¼ �2
1� dz=dz
1þ dz=dz

; (21)

where z is the height-variable corresponding to the stretched
bilayer, in the manner described after eqn (19b) (see also
Fig. 1). Using eqn (20) to eliminate uD(z) yields

nðMÞ
1þ a

¼ 1

uA
� 1� dz=dz
1þ dz=dz

(22)

for each area strain uA.
We used simulation data for five different bilayer systems

featuring areas per lipid of (64, 66, 68, 70, 72) Å2, choosing 68 Å2

as the reference Az, and directly calculated the area strains for
the other four areas as

uA ¼
Az � Az

ðAz þ AzÞ=2
: (23)

Using the same relative volume weights for the component
groups of lipids (terminal methyls, methylenes, methines, etc.)
as above, we determine a set of z(z) values that corresponds to
the same amount of material in the central slab between z(z)
and �z(z) (for each area). We numerically differentiated z(z) for
each area strain uA to obtain dz/dz, which together with eqn (22)
yields four estimates of n(z)/(1 + a) from which we obtain
averages with standard deviations for the uncertainties. It may
be noted that the elastic asymmetry a could conceivably depend
upon z, but we know of no way to investigate that. Rather, given
the small value of a suggested by Table 1 and the errors of our
local strains, we will proceed by ignoring a altogether.

Our main result for the z-dependent Poisson ratio is shown
in Fig. 2. In the region in which there is only water, z \ 2.3 nm,
n(z) is statistically consistent with a value of 1/2. For smaller z,
the respective averages of n(z) are consistent with the value
obtained from the homogeneous analysis in Section II. More
precisely, averaging n(z) over the hydrocarbon region yields
1
2
� hnðzÞihc ¼ 2:1� 10�2, quite close to the Sim 2b value, in

which we proposed a Poisson ratio within the hydrocarbon
region using simpler arguments. Looking beyond averages,
there appear to be two small ‘‘dips’’ that are borderline statis-
tically significant: one at z E 0.4 nm, and one at z E 1.6 nm
(near the location of the glycerol groups). We explored whether
these oscillations could be removed by varying the relative
weights of the component groups. Although this affected the
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values of n(z) somewhat, we found no set of weights that
eliminated the small oscillations.

V. Discussion

Our observations, derived from both experiment and simula-
tion, and summarized in Table 1 and Fig. 2, indicate that the
Poisson ratio for lipid bilayers is close to 1/2, with relative
deviations about 3%. The predicted relative volume changes
DV/V are very small, even for strains that would rupture most
bilayers.48 Therefore, we should be on safe ground when
making the usual approximation that volumes do not change
significantly under anisotropic mechanical stresses of biophysical
interest.

The values of n obtained by comparing experimental and
simulation results (Cases Exp 1a compared to Sim 2a and
Exp. 1b compared to Sim 2b), and the values determined in
our simulation (Cases Sim 2a and 2b) are in remarkably good
agreement. This is to some extent fortuitous, though, since the
experimental values for KV and KA have neither been determined
for the same lipid, nor at the same temperature. Likewise,
values of KA, KV and s have not been obtained from the same
simulation. It would be valuable to do simulations on the same
system, varying both lateral pressure and bulk pressure, to
obtain the three quantities independently.

While the most immediate lesson of our work is confirma-
tion that a lipid bilayer is nearly perfect soft matter, in the sense
that it is highly deformable relative to its bulk compressibility,
there may be more to be learned from further considering the
local Poisson ratio. Admittedly, the variations in n(z), as
extracted from our data, are statistically not very compelling;
but they would be highly interesting if true and might merit

following up on. Observe that the deviation in 1
2
� n at

z = 1.6 nm in Fig. 2 is about three times as large as in regions
away from the two ‘‘dips’’. This means that KA(z)/KV(z) is about
three times larger, or, relatively speaking, it is about three times
harder to stretch membranes at this particular depth than
elsewhere. This is intriguing, because the location where area
strain is found to be particularly expensive happens to coincide
with the location of the pivotal plane, where area strain indeed
vanishes. Moreover, Fig. 2 also suggests that the ‘‘active region’’
for deviations of n(z) from 1/2 is not limited to the hydrocarbon
region, but appears to extend into the headgroup region nearly
as far as the Luzzati thickness DB.

Our z-dependent findings are consistent with observations
by Campelo et al.,27 who have shown (on the basis of simulations
using the MARTINI54,55 model) that the lateral stretching modulus
profile has indeed a maximum near the neutral surface (which is
not identical to, but quite close to,56 the pivotal plane). To
determine this profile, they followed an entirely different techni-
que, based on monitoring the tension-dependence of the lateral
pressure profile. This, however, requires measuring stresses
fairly precisely, which is computationally expensive. In contrast,
our method for accessing KA(z)/KV(z) via the Poisson ratio relies
exclusively on keeping track of local bilayer material rearrange-
ments, which can be done based on configurations alone,
without calculating stresses or energies. It is hence conceptually
easier and can—potentially—be done with higher accuracy. The
idea is similar in spirit to a recent proposal to measure the ratio
of tilt and bending modulus by counting the fraction of lipids
within slices of buckled membranes—i.e., again by a purely
geometric procedure.57

VI. Conclusion

In this paper we have shown that lipid bilayers behave like
typical soft condensed matter, having a Poisson ratio that
deviates about 3% from the common soft matter limit of
n ¼ 1

2
. While not unexpected, this fills a niche in the elasticity

theory of membranes, and it supports the approximation used
in many theories that area and thickness deformation are
strongly coupled, with only a negligible correction due to
volume change. We have also seen that the elastic asymmetry a
describing the difference between the lateral and perpendicular
diagonal elements of the full elastic tensor deviate by less
than 1%.

Beyond this homogeneous finding, any depth dependence of
the Poisson ratio, or of a membrane’s elastic moduli, would surely
have profound implications for a number of local membrane
processes, such as protein insertion, gating of channels (especially
mechanosensitive ones), fission, and fusion. This simply mirrors
some of the interesting possibilities opened by the depth
dependence of the lateral pressure profile. However, it seems
safe to expect in the foreseeable future that the study of locally
resolved constitutive relations must rely on simulation approaches,
for lack of sufficient resolution in present experimental techniques.
This paper is a step in that direction.

Fig. 2 Position-dependent Poisson ratio n(z) as a function of distance z
from the bilayer midplane, obtained from an atomistically simulated DOPC
bilayer.42 The first average is over all z and the second average is only for
the chain region. Overlaid are the simulated main structural regions with
the hydrocarbon thickness DC and the Luzzati thickness DB indicated by
arrows.
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