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Understanding the phase behavior of a protobiomembrane
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The rich thermotropic behavior of lipid bilayers is addressed using phenomenological theory informed by
many experiments. The most recent experiment not yet addressed by theory has shown that the tilt modulus in
DMPC lipid bilayers decreases dramatically as the temperature is lowered toward the main transition temperature
TM . It is shown that this behavior can be understood by introducing a simple free energy functional for tilt that
couples to the area per molecule. This is combined with a chain melting free energy functional in which the area
is the primary order parameter that is the driver of the main transition. Satisfactory agreement with experiment
is achieved with values of the model parameters determined by experiments, but the transition is directly into the
gel phase. The theory is then extended to include the enigmatic ripple phase by making contact with the most
recent experimentally determined ripple structure.
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I. INTRODUCTION

Protobiomembranes consisting of lipid bilayers have fasci-
nating thermodynamic phase behavior even when an artificial
membrane is formed with only one of the many lipids found
in organisms. When immersed in water, phosphocholine (PC)
lipids that have two saturated hydrocarbon chains, both of
chain length n (for n = 14–18), have four phases and three
transition temperatures that depend upon the chain length. The
high temperature phase is often called the fluid phase because
the lipids in the two-dimensional membrane are disordered
and mobile. It is often identified by the symbol Lα . (Bio-
physics literature often calls this the liquid-crystalline phase,
although the other phases are also considered liquid crystals
in physics.) Most of the membranes in organisms are in a
fluid phase. As temperature is lowered, the lipids become
better ordered at the main phase transition temperature TM ,
but the bilayer is far from crystalline and it takes an enigmatic
ripple (Pβ ′ ) structure [1–7], which has been a major challenge
for physical understanding. Further reduction in temperature
through the so-called pretransition or lower transition at TL

takes the bilayers into the misnamed gel (L′
β) phase, which

still retains considerable headgroup disorder while having
quite long range chain packing order [8]; skin membranes
include gel-like regions [9,10]. Even further reduction in tem-
perature, while still remaining above the freezing point of
water in which the bilayers are immersed, very slowly form
a subgel phase (LC) that begins to show signatures of two-
dimensional crystallinity which are still not well characterized
structurally and likely have no biological importance.

This paper focuses on the fluid (F ), ripple (R), and gel
(G) phases and the main and lower transitions of the PC lipid
DMPC which has two saturated linear hydrocarbon chains,
each with 14 carbons bonded via a glycerol moiety to a PC
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headgroup. It has been widely recognized that the main phase
transition of DMPC at TM = 24.0 ◦C is first order with a la-
tent heat �H = 6.5 kcal/mole [11] and discontinuous jumps
in structural quantities, notably a 27% increase in area per
molecule from 0.47 nm2 [12] to 0.60 nm2 [13] and a 2.7%
increase in volume [14]. However, the temperature depen-
dence of the volume above the transition was noted as possibly
signifying the existence of a critical point at an experimentally
inaccessible point in an extended phase diagram. Although
this was a rather small effect, there have also been other
suggestions of pseudocriticality from experiments [15,16].

Recently, more dramatic critical-like behavior above the
main transition has been observed when studying the tem-
perature dependence of mechanical moduli in DMPC [17].
Theories of the mechanical behavior of membranes originally
focused at long length scales where the bending modulus
KC dominates. As the molecular length scale is approached,
molecular tilt becomes important in physical studies. It is a de-
gree of freedom that overcomes an otherwise insurmountable
barrier to biological membrane fusion and fission [18]. The
new finding regards the tilt modulus Km. Like KC , it is like the
stiffness of a spring and its inverse 1/Km is like a compress-
ibility. The tilt modulus decreases by a factor of 3 when T
decreases from 40 ◦C to the transition at TM = 24 ◦C. This is
unlike most stiffness properties that increase with decreasing
temperature, but it is like what occurs near a critical point.
Although Km does not reach zero, which would be an infinite
critical compressibility 1/Km, the idea that critical behavior is
observable even when the transition is ultimately first order is
well understood. Figure 1 shows how this occurs in a simple
fluid. When the pressure is constrained, the thermal trajectory
may cross the first order phase line, but still lie within a critical
region surrounding the critical point where the compressibility
becomes large. Of course, for simple fluids, pressure and tem-
perature can be varied to achieve an experimental trajectory
through the critical point, but similar experiments have yet to
be found for lipid bilayers.

2470-0045/2023/107(6)/064408(10) 064408-1 ©2023 American Physical Society

https://orcid.org/0000-0002-9844-5934
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.064408&domain=pdf&date_stamp=2023-06-29
https://doi.org/10.1103/PhysRevE.107.064408


JOHN F. NAGLE PHYSICAL REVIEW E 107, 064408 (2023)

FIG. 1. Solid line shows the locus of a first order transition that
ends in a critical point.

The pertinent thermodynamic quantities in theories of
phase transitions near critical points are a reduced or rel-
ative temperature t and an order parameter α. Of course,
lipid molecules are much more complex than the substituents
in typical simple fluids and the interaction with water to
form bilayers adds another level of complexity. One should
therefore not be surprised that there would be several differ-
ent order parameters that could interact with each other in
interesting ways [19]. This paper addresses this by develop-
ing a phenomenological, continuum, Landau–de Gennes–like
description of the free energy. This follows many previous
papers that have developed continuum theories for lipid bi-
layers [20–28]. While some of these theories have provided
connections to the molecular level [20,22], generally the con-
tinuum models involve phenomenological parameters that do
not relate to molecular interaction energies. Nevertheless,
continuum-level models can provide insight into the broad
features of a system and its phase transitions, more so when
the results of the parametrized model agree quantitatively with
much experimental data; the model in this paper is compared
to more data than previous theories.

This paper develops free energy functionals for two types
of order parameters. Section II focuses on the hydrocarbon
chains whose conformational change from essentially straight
(all-trans) at low temperature to disordered conformations in
the fluid phase; this chain disordering (melting) has long been
recognized as the driver of the main transition [29]. This
section emphasizes that assuming a conventional free energy
functional that works for simple fluids is not necessarily the
best choice for the more complex state of lipids in a bi-
layer. Section III focuses on molecular tilt to make contact
with the new experimental results for the tilt modulus Km.
Section IV shows results obtained from an intermediate theory
that combines the free energies’ functionals from Secs. II
and III. While this intermediate theory accommodates a good
deal of experimental data, including the new data for the
temperature dependence of tilt modulus, it only provides a
main transition from the fluid phase to a gel phase. Section V
then reviews the heterogeneous structure of the intervening
ripple phase. Earlier theories [20–28] are followed in Sec. VI
by invoking a term in the free energy functional that favors
heterogeneity, thereby providing both the main and a lower
transition. While this is not deemed completely satisfactory,

FIG. 2. Isotherms for the φ4 free energy functional in Eq. (2)
with b2 = −10.8 × 10−21 J/nm4, b3 = −7.74 × 10−18 J/nm6,
b4 = 3.21 × 10−17 J/nm8, and TC = 335 K.

as discussed in Sec. VII, it is suggested that this continuum
theory is nevertheless an advance on previous theories.

II. CHAIN MELTING FREE ENERGY FUNCTIONAL FC

Conformational disordering of the hydrocarbon chains,
i.e., chain melting, is clearly the dominant feature of the main
transition [29]. Two likely quantities for the chain melting or-
der parameter are either the difference in the area per molecule
or the difference in thickness between the fluid phase and the
gel phase. This is not a major choice because area times thick-
ness is volume and there is only a small percentage volume
change at the main transition [14]. Area A is chosen and the
order parameter is defined as

α = A − A0. (1)

Here A0 = 0.40 nm2 is twice the cross sectional area of the
hydrocarbon chains in the gel phase. It is important to empha-
size that A0 is not the surface area per DMPC molecule in the
gel phase whose value is AG = 0.47 nm2 [12]; instead, AC =
AGcos(θG) takes into account that chains tilted by θG = 32◦
[12] are closer together than the headgroups. This convention
assigns α = 0 to the gel phase. In the fluid phase, disordered
chains have no average tilt, so A is then the headgroup area.

A major choice regards the form of the free energy func-
tional. If one slavishly adopts the conventional form for
magnetism or simple fluids, one writes

FC (α, t ) = 1
2 b2tα2 + 1

3 b3α
3 + 1

4 b4α
4, (2)

where t is defined as

t = T − TC . (3)

Negative values of b2 and b3 bring about a first order transition
as illustrated in Fig. 2. The critical point is pushed into a
different place in parameter space that is quite likely difficult
to achieve in experiments on lipid bilayers. That is consistent
with the suggestion that critical behavior affects the phase
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transition even though it is ultimately a first order transition
[23,29].

There is, however, a problem with the model in Eq. (2).
The area compressibility modulus KA/A is the curvature in
the isotherms at their minima for a flaccid bilayer with zero
surface tension. Figure 2 indicates that the curvatures are
equal for the gel and fluid phases and this is proven in the
Appendix. Therefore, KA has only a slightly larger value in
the gel phase than in the fluid phase, by the ratio of AF /AG.
Although the gel phase KAG is relatively poorly determined
experimentally, it is clearly much larger than KAF in the fluid
phase [30,31] and a simulation gives a ratio KAG/KAF about
4.6 [32].

This paper instead chooses a free energy functional form
extracted from a microscopic toy model of chain melting [33].
This toy model emphasized the hard-core, steric, excluded
volume interaction between hydrocarbon chains in compe-
tition with trans-gauche type conformational disordering. In
contrast to the soft interactions of order kT between spins
in Ising models, hard-core, excluded volume interactions are
essentially either infinite or zero compared to kT . Like the
two-dimensional Ising model, the statistical mechanics of the
toy model were exactly calculable, but with major differences
in thermodynamic behavior, even at the qualitative level. In
the spirit of free energy functional theory, let us use the lowest
order approximation for the equation of state of that model
[33] that applies near its critical point that occurs at TC and
chain packing area A0. In terms of t in Eq. (3) and α in Eq. (1),
the equation of state for the surface pressure π is

π = Bt − C(α2 + 2αDt ) + πc (4)

for α greater than zero. In the toy model, the smallest achiev-
able area is α = 0 due to the hard core steric interaction of
packing all-trans hydrocarbon chains. For an incompressible
chain packing phase there is a minimum area at A0, so π at
α = 0 is not constrained by Eq. (4) but can take values up to
infinity with no further decrease in α. This is a completely
incompressible gel phase, where the incompressibility refers
to the chains, not the headgroups which will appear in the next
section. The constant πc in Eq. (4) will be chosen to ensure
that the experimental trajectory has π = 0 corresponding to
lipid bilayers that are experimentally flaccid with no tension
or pressure.

Figure 3 shows the π -A isotherm at t1 = −27.8 K for cho-
sen values of the B, C, and D parameters in Eq. (4). The main
transition occurs at T1 = 24.0 ◦C, so with Eq. (3) this choice
gives TC = 51.8 ◦C. The usual Maxwell equal area construc-
tion that equates the free energies of the two phases then
replaces the metastable and unstable portions of this isotherm
with the horizontal tie line at π − πC = −33.0 mN/m. Since
π = 0 for a flaccid bilayer, this gives the critical pressure πc =
33.0 mN/m. The increase in the experimental fluid phase area
at the main transition is designated α1 and equals 0.16 nm2. It
is located at the end of the horizontal tie line that is obtained
from the Maxwell construction; this requires exactly

t1D = −2α1/3. (5)

Of course, the gel phase is not totally incompressible. That
could be taken into account by using a compressible gel phase
line like what is shown in Fig. 3; for prominent visualization,

FIG. 3. Surface pressure vs area per lipid isotherms for
t1 = −27.8 K, B = 1.41 (mN/m)/deg, C = 725 (mN/m)/nm4,
D = 0.0038 nm2/deg, and πc = 33.0 mN/m (solid), with the tie
line (dashed). A compressible gel phase is shown by the dash-dot
line and the corresponding tie line by a short dash line.

it has been drawn to give a gel phase compressibility KA =
−(∂α/∂πt )/A that is 40% as large as the fluid phase compress-
ibility. Even though that is an overestimate [30–32], there is a
rather small difference in the corresponding tie line, so gel
phase compressibility will be ignored henceforth.

As t increases from t1, the tie line in Fig. 3 moves to
experimentally inaccessible nonzero values of π and its length
becomes shorter and vanishes when t = 0. This overall behav-
ior is shown in Fig. 4. The point at t = 0, α = 0, and π = πc

is a critical point with nonanalytic thermodynamic proper-
ties. As t approaches 0, −(∂α/∂t )π diverges as t−1/2 and
the isothermal area compressibility −(∂α/∂π )t/A diverges
as 1/α as α approaches zero. The complete set of critical
exponents for the toy model is given in [33].

In the original toy model πc was zero. However, the model
was modified to allow for vacancies and that allowed for ex-
pansion in the lipid volume, which was taken into account by
adding an attractive van der Waals interaction as a mean field
term. Along with headgroup and water interactions, positive
values of πc were obtained and then the first order transition
at π = 0 corresponds to the experimentally flaccid bilayer.
Straightforward experimental values of the interaction param-
eters resulted in reasonable agreement with experiment [34].
That exact quantitative analysis is not repeated here. The way
that those prior results are taken into account in the present
Landau type model is as justification for assigning the value
of πc in Eq. (4) that gives agreement with experiment when
π = 0 [34].

The values of the other parameters in Eq. (4) and in
the caption of Fig. 3 were chosen to obtain agreement with
several types of experimental data. Here the appropriate ther-
modynamic equations are derived from Eq. (4). The area
compressibility modulus KA is obtained from Eq. (4) as

KA/A = −(∂π/∂α)t = 2C(α + Dt ). (6)
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FIG. 4. Isotherms for the model in Fig. 3 for some additional
temperatures. The coexistence for t = 0.45 t1 is the red dotted tie
line. The dash-dot curve shows the locus of fluid phases that coexist
with the gel phase at different temperatures and pressures. The solid
curve at the top is the critical isotherm and subsequent lower solid
curves are for lower temperatures with values of the normalized
reduced temperature shown in the legend. The black dashed line
shows the experimentally accessible locus.

At the first order transition, Eq. (5) reduces this to

KA/A1 = (2/3)Cα1, (7)

from which the model parameter C can be determined from
experimental data for A1, α1, and KA1. The equation of state
(4) also provides the change in area with temperature,

(∂α/∂t )π = − (∂π/∂t )α
(∂π/∂α)t

= B − 2CDα

2C(α + Dt )
, (8)

which additionally involves both the B and D parameters. At
the first order transition, Eq. (5) reduces this to

(2/3)Cα1(∂α/∂t )π = B − 2CDα1. (9)

Another independent relation is obtained from the enthalpy
of the transition. First, the free energy FC is obtained by
integrating π = −(∂F/∂α)t to give

FC (α, t ) = −Btα + (C/3)(α3 + 3Dtα2) − απc. (10)

Entropy follows as

SC (α, t ) = −(∂F/∂t )α = Bα − CDα2, (11)

so the configurational entropy SC = 0 in the gel phase. Then
the first order transition enthalpy is

�H1 = T1�S1 = T1α1(B − CDα1). (12)

The three independent equations (7), (11), and (12) enable
determination of the B, C, and D model parameters from ex-
perimental data. Equation (5) gives the value of t1 and Eq. (3)
gives the critical temperature TC .

The experimental value of �H1 for DMPC is 6.5 kcal/mole
at T1 = 297 K [11]. At T2 = 303 K the area α2 is 0.20 nm2

[13,35]. From an increase in the thickness of 0.013 nm [36]

and a decrease of 1% in the volume [14], the area at the main
transition A1 = 0.56 nm2 and α1 = 0.16 nm2, which is what
is shown in Fig. 2. These give (∂α/∂t )π = 0.0067 nm2/deg,
which is somewhat larger than previous values (see p. 2634
of [13]). An additional reason to use a smaller value is the
loss of one of the two lateral dimensions in the toy model
that this Landau model is based on; since an area expansion
is the square of a linear expansion, for small expansions this
suggests a factor of 1

2 and the value 0.003 nm2/deg is used for
(∂α/∂t )π . The experimental value of the area compressibility
modulus KA at T = 29 ◦C is 234 mN/m [37], but there are two
factors that reduce this value when used in Eq. (7). First, the
tilt independent bending modulus KC should also be smaller
by about a factor of 0.6 [17] and this suggests that KA should
also be smaller. Assuming as usual [37,38] that KC is propor-
tional to KA times thickness squared and that the hydrocarbon
chain thickness increases by 0.011 nm from T = 29 ◦C to
T = 24 ◦C, an estimate of KA = 130 mN/m is used at t1.
Second, it will be assumed that this value of KA should be
further divided by a factor of three to take into account that
each chain in the toy model only has two neighbors versus
six neighbors in experiment. Values of the ensuing model
parameters are given in the caption to Fig. 3.

The Gibbs free energy is obtained as

G(t, π ) = F (t, α) + πA. (13)

It is properly concave because the specific heat is non-
negative:

Cπ = T (∂S/∂t )π = 3(B − 2CDα)2/2Cα. (14)

Furthermore, the value of Cπ = 430 cal/mole/deg is close to
the experimental value of 370 cal/mole/deg [39].

III. TILT FREE ENERGY FUNCTIONAL F�

In this section a free energy F	 for the tilt degree of free-
dom is developed. For hydrocarbon chains tilted by angle θ ,
following conventional notation [24,27,28,40], the tilt order
parameter is written as m = tan θ . Due to tilt symmetry, the
free energy functional for tilt consists only of even powers
of m,

F	/A = 1
2 Kmm2 + 1

4 b4m4 + 1
6 b6m6 + · · · , (15)

where Km is the tilt modulus and A is the area per lipid. If
one sets Km = b2t , where t remains the relative temperature,
t = T − TC , then this is analogous to the φ4 theory of mag-
netism when one terminates at the m4 term with b4 taken to
be greater than zero to ensure stability. Minimizing Eq. (15)
with respect to m yields m2 = 0 for t > 0, and for t < 0
it yields a symmetry breaking spontaneous tilt m2 = −t/b4.
This φ4-like theory fails in that it predicts a critical point at
t = 0 with Km = 0, whereas DMPC has a first order transition
at which Km ≈ 20 mN/m is still nonzero [17]. Of course, one
can formally obtain a first order transition by adding a cubic
b3m3 term to Eq. (15), but this violates the symmetry between
positive and negative tilting.

Let us consider two ways to fix the preceding failure of
the m4 theory in Eq. (15). In this paragraph an ultimately
unsuccessful, but illuminating, way is considered. This way
adds an m6 term in Eq. (15) and assigns a negative value to b4.
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Adjustment of the parameters in this m6 theory then provides
a first order transition and a rather trivial way to reproduce
the temperature dependence of the experimental tilt modulus
by choosing TC = 291 K in Eq. (3). Holding b2 fixed then
gives a value of Km twice as large at T2 = 303 K as at the
first order transition at T1 = 297 K. However, this m6 theory
fails because of the value that it predicts for the enthalpy of
the transition

�H	 = T1�S	 = −T1�[(∂F	/∂t )m] = 1
2�[T1b2m2]. (16)

Since m = 0 in the fluid phase, this calculation needs only
gel phase values, AG = 0.47 nm2 and θG = 32◦ [12], which
gives m2 = 0.39. The value of b2 is obtained as Km/t , where
Km = 20 mN/m and t = 6 K at T1 = 297 K. The resulting
�H	 = 28 kcal/mole is four times larger than the total ex-
perimental enthalpy �H	. It fails to include any contribution
from trans-gauche isomerization and from the increase in van
der Waals cohesive energy required for the volume increase
at the transition. These latter two contributions have been
estimated to account for nearly all the experimental �H [29].
This m6 theory is on the wrong track because it simply does
not account for the chain melting transition in lipid bilayers in
other classes of lipids, like the phosphoethanolamines (PE),
that have rather comparable transition quantities as the phos-
phocholines but have zero tilt in the low temperature phase
[41].

In this paper, the m4 free energy functional is modified in a
different way that recognizes that the driver of the main phase
transition is hydrocarbon chain melting. It is then appropriate
to couple the tilt free energy to the chain melting order param-
eter α, so let us consider the following free energy functional
F	(m, α) for the tilt contribution to the total free energy,

F	(m, α) = 1
2 [g(α) − b2]m2 + 1

4 b4m4, (17)

where b2 and b4 are constant parameters. The major dif-
ference from the m4 theory in Eq. (15) is the removal of
explicit temperature dependence and adding an area depen-
dence in the function g(α) that is yet to be determined. Setting
[∂F	(m, α)/∂m]α = 0 obtains potentially stable tilt values

m2 = [b2 − g(α)]/b4 (18)

when m2 is positive. Without loss of generality, let g(0) = 0
in the gel phase. Then, the experimental value of m2 = 0.39
in the gel phase [12] provides the b2/b4 ratio and Eq. (18)
verifies that b2 is positive for the choice of its sign in Eq. (17).
For the fluid phase with m = 0, the tilt modulus is

Km(α) = [∂2F	(m, α)/∂m2]α = g(α) − b2. (19)

It goes negative for α = 0, as it should in order to break
symmetry and induce the spontaneous tilt given by Eq. (18).

Next, let us consider what is required of the free energy
functional in Eq. (17). First, recall that a range of (α, m) is not
stable thermodynamically when there is a first order transition
in α just due to the FC term discussed in Sec. II. Nevertheless,
that previous determination will be modified by F	 and that
requires knowing the free energy functional in the unstable
and metastable regions. Second, recall that the reason there is
spontaneous tilt in the gel phase is that the steric area of the
lipid headgroups Ahead determines the minimum area per lipid

AG. In contrast, the chain energy is minimized when the cross-
sectional area is A0. The actual gel phase area AG is then the
larger of A0 and Ahead. When A0 is smaller than Ahead, for PC
lipids but not for PE lipids, the cohesive van der Waals energy
of the chains is minimized in the gel phase by cooperatively
tilting by angle θG such that cosθG = A0/Ahead [41–43].

We now apply this to g(θ ) in Eq. (19). As the constrained
α is forced to increase from zero, the chain cross sectional
area A increases, so the chains tilt less and m2 decreases.
This requires g(α) to increase with α in Eq. (18). When α

reaches the value 0.07 nm2, at which A = Ahead = AG, the
deepest cohesive chain energy is achieved when m2 is zero.
That requires g(0.07) = b2 in Eq. (18) and this also mini-
mizes F	 in Eq. (17). As α is increased further, g(α) further
increases and Km(α) in Eq. (19) increases from zero. The first
order transition is at TM := T1 = 24 ◦C with Km1 = 20 mN/m
and it increases to Km2 = 40 mN/m at T2 = 30 ◦C. From the
previous section α2 = 0.20 nm2 and α1 = 0.16 nm2. Then the
values of Km1 and Km2 and Eq. (19) require

g(0.20) − g(0.16) = g(0.16) − g(0.07). (20)

To proceed further, it is necessary to choose a functional
form for g(α). A linear g(α) does not satisfy Eq. (20). One
could use a power series, but to minimize the number of
additional parameters, g(α) = 
αp is used. Numerical fitting
to Eq. (20) yields p ≈ 3 and then fitting to the Km values ob-
tains 
 = 5123 (mN/m)/nm6 and b2 = 0.94 mN/m. Finally,
b4 = b2/0.39 = 2.41 mN/m follows from Eq. (18) for the gel
phase with g(α) = 0 and the experimental m2 = 0.39 value.

Now that all the parameters in Eq. (17) have been derived
from experimental DMPC data, the final test is the magnitude
of the transition enthalpy just due to the additional tilt term
and ignoring the effect of tilt on the parameters in FC . Since
enthalpy H = F + T S + πA, the change in enthalpy at the
transition just due to the tilting term is

�H	 = �F	 + TM�S	 + π�A = �F	, (21)

where the last equality comes because π = 0 for flaccid bi-
layers and there is no explicit T dependence in F	(m, α), so
S	 = 0 in both phases. In the fluid phase Fm = 0 because
m2 = 0 and in the gel phase it equals −(1/4)A0b2

2/b4. This
yields �H	 = 0.01 kcal/mole, which is quite small compared
to the total experimental enthalpy of 6.5 kcal/mole. This is
consistent with the greater number of degrees of freedom in
chain melting compared to chain tilting.

IV. COMBINING TILT WITH CHAIN MELTING

The chain melting theory in Sec. II took no consideration
of the headgroup interaction that brings about tilt in the gel
phase. This section treats the effect of tilt on chain melting by
combining the free energies from Secs. II and III

FC	 = FC + F	. (22)

Then, a tilt pressure term must be added to the chain pres-
sure shown in Fig. 3. The tilt pressure is calculated as
−[∂F	(m, α)/∂α]m from Eq. (17), where m is determined by
Eq. (18) and is zero when m2 would go negative according to
Eq. (18). The tilt pressure is negative as would be expected by
adding another degree of freedom. Although it is zero in the
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FIG. 5. Comparing isotherms at t1 = −26.4 ◦C with tilt (solid)
and without tilt (dot-dashed) and tie lines with tilt (dashed) and
without tilt (dash-dot-dot).

fluid phase where there is no net tilt, it affects the position of
the tie line, as seen in Fig. 5.

Although adding tilt does not affect the first order transition
very much, the phase behavior at higher temperatures and
surface pressures is considerably affected because there is
smaller variation of π with α in the no-tilt isotherm, whereas
the tilt modification is explicitly temperature independent so
it becomes more dominant at higher t . Figure 6 shows the
ensuing π -t phase diagram with and without tilt. The no-tilt
phase line ends in a single critical point. With tilt there is a
triple point in Fig. 6 with two first order lines extending to
higher π with a new intermediate phase between. The upper
line ends in a critical point like the no-tilt model. The lower
phase line extends to very high values of π . The appearance
of two transitions as a function of temperature for values of
π above the triple point is suggestive of the lower and main

FIG. 6. π -t phase diagram showing the loci of the first order
transitions and critical points with and without tilt.

FIG. 7. Structure of the DMPC ripple phase adapted from [7].
The sample was a stack of bilayers at T = 18 ◦C. Gray scale shows
the electron density which is highest in the headgroup band and
lowest in the bilayer center. Coarse grained representations of chain
conformations are superimposed in color. The unit cell is shown by
yellow dashed lines. The upward-sloping major side of the ripple is
in the center of the unit cell and the minor side is at the edges.

transitions in DMPC and then the intermediate phase would
be likened to the ripple phase. However, the differences in
enthalpies and areas are far too small. That the theory in this
section ultimately misses getting both the main and the lower
phase transitions is not surprising as there are more complex
features to which we turn in the next section.

V. REVIEW OF THE RIPPLE PHASE

Although there are thermal out-of-plane fluctuations, es-
pecially in the fluid phase, the time averaged bilayer is flat,
in both the gel and fluid phases, as has been assumed in the
preceding theory. In contrast, the ripple phase breaks the flat
symmetry by having static out-of-plane structure that is singly
periodic in one of the in-plane directions. The most recent
high resolution x-ray study obtained an electron density pro-
file that is shown in Fig. 7. As had originally been recognized
[1], the profile is asymmetric with a major, upward-sloping,
longer side and an even more downward-sloping, shorter mi-
nor side. The electron density in the headgroup region is
primarily due to the electron dense phosphate headgroups so
the higher electron density in the major side headgroup band
means a smaller area per lipid compared to the minor side with
its lower electron density. Figure 7 also superimposes chain
conformations obtained from wide angle x-ray scattering on
the electron density profile. The gel-like chains in the major
side are caricatured as elongated and thin. In the minor side
the chains are portrayed as shorter and more fluidlike on
average, with more distance between them consistent with the
lower electron density in the minor side headgroup region.

The height profile z(x) of the ripple is quantified in Fig. 8.
Also shown is the area profile α(x) that is obtained by smooth-
ing the electron density data from Fig. 6 in [7]. Note that
α(x) = 0.049 in the major side is greater than zero because
the chains are less tilted by θtilt = 18◦ relative to the local
bilayer normal compared to 32◦ in the gel phase. A smaller
tilt in the ripple phase has also been reported from infrared
spectroscopy data [44]. It is also estimated from [7] that the
maximum α(x) = 0.15 nm2 in the center of the minor side
between chains designated as 1 and 2 in Fig. 7. It may also
be reiterated [7] that the relative offset in x of the locations of
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FIG. 8. Thick black line shows the ripple phase height profile
z(x) of the headgroup band of one monolayer in Fig. 7. The thick
dashed magenta line shows the corresponding area profile α(x) times
50. The other broken lines show six potential additions that could
account for a heterogeneous coupling term; they are arbitrarily scaled
for visibility and the functional forms are identified in the legend.

the monolayer minimal headgroup electron densities weighs
strongly against interdigitation of chains in the minor side.
Obtaining the structure of the ripple phase continues to be a
challenge for simulations [45–50].

VI. TWO PHASE TRANSITIONS

To address the phase transitions further, consider the Gibbs
free energies, GG for the gel phase, GF for the fluid phase, and
GR for the ripple phase, as functions of temperature. For the
experimental trajectory π = 0, G is the same as the Helmholtz
free energy F . In Fig. 9 the free energy of the gel phase has

FIG. 9. Model Gibbs free energies that give a ripple phase over a
10◦ interval with TC = 48.9 ◦C, TM = 24.0 ◦C, and TL = 14.0 ◦C.

been simplified to be zero at all temperatures, thereby ignoring
higher order contributions like thermal expansion of the chain
packing [8]. For the ripple phase, the simple approximation
is made that the temperature dependence of GR is a linear
combination of a gel-like major side and a fluidlike minor side
as well as a new term GH that depends on heterogeneity:

GR(T ) = γ GG(T ) + (1 − γ )GF (T ) + GH . (23)

In first approximation, GH will be considered to be tem-
perature independent. Accordingly, the slope of GR(T ) lies
between those of GG(T ) and GF (T ). Importantly, if GH < 0,
then there will be two transitions as shown in Fig. 9.

Since transition enthalpy

�H = T1�S = −T1�(∂G/∂T )π , (24)

the value of γ in Eq. (24) determines the transition enthalpy
of both the lower transition �HL and the main transition
�HM . Because the specific heat is quite small compared to
the transition enthalpies, GF (T ) has nearly constant slope, so
�HM/�HL ≈ γ /(1 − γ ). Since the experimental �HM/�HL

is about 5 [11], Eq. (24) assigns γ ≈ 5/6 of the ripple ther-
modynamics to the major side. That suggests a relatively
larger major side fraction γ than visualized in Figs. 7 and
8. However, this also assigns 1/6 of the ripple to a pure
fluid minor side, and it is clear from Fig. 7 that the minor
side is more ordered on average than the pure fluid phase,
so the γ value that agrees with experimental values of the
transition enthalpies is reasonable. Finally, the difference in
experimental transition temperatures determines the value of
GH in Eq. (23). However, note that GH will have to be more
negative if GG in Eq. (23) is replaced by a positive value to
account for the smaller θtilt in the major side compared to the
gel phase that is noted in the previous section. Also, note that
the experimental specific heat [39,51] and the thermal rate of
volume expansion [14] are greater in the ripple phase than in
the G and F phases, so GR(T ) should be more concave than
allowed by Eq. (23), which assumes that GH is independent
of temperature. Also, the amplitude of the ripple has been re-
ported to increase as temperature increases [52,53], so adding
temperature dependence to GH would allow this simple model
to be more realistic, but structural data of comparable quality
to Fig. 7 are not available to pursue this.

VII. DISCUSSION

Chain melting is the most important thermodynamic driver
of the main phase transition [29]. Similar to much of the litera-
ture, Sec. II treats this with a continuum free energy functional
involving an order parameter which is here taken to be chain
area α rather than the essentially equivalent bilayer thickness
used by others [21,23,27,28]. More importantly, the functional
form adopted in this paper differs from the conventional one
to better accommodate the steric interactions that account for
a larger area compressibility modulus in the gel phase than
what the conventional form provides. This functional form
comes from a detailed model of sterically hindered chain
packing that has a 3/2-order critical point [29,33] rather than
from the conventional φ4 form appropriate for soft spin-type
interactions.
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Chain tilt is an important secondary order parameter for
lipid bilayers that have large headgroups that force tilt in the
gel phase. Although the functional form that is used in Sec. III
is similar to the φ4 form, it differs by coupling to the chain
area α and its temperature dependence rather than to tem-
perature directly. This treatment quantitively reproduces the
recently observed temperature dependence of the tilt modulus
data above the main transition [17]. This decrease in the tilt
modulus as temperature is lowered to the main transition is
the best experimental evidence thus far for a critical point in
lipid bilayers. The theory predicts that the observed first order
transition would become critical if the lateral pressure π could
be increased sufficiently, but it has not yet been possible to do
that experimentally.

Chain melting and chain tilting together provide a funda-
mental understanding of the main transition at a qualitative
level and the theory in Sec. IV provides quantitative support.
However, this leaves unexplained the lower transition and the
ripple phase. It has been recognized in the many papers on
the subject that this is an interesting theoretical challenge
[20–28,54–59]. At the continuum level it has long been rec-
ognized that at least one heterogeneous Ginzburg-like term
is required in the free energy to obtain a phase that is not
spatially uniform [21,23–25,27,28]. Such theories posit one
or more order parameters and then consider terms that involve
their gradients and divergences to lowest order. The latest
example considered many such terms, also with two order
parameters [28]. To obtain a modulation profile z(x), a spatial
functional form with two sinusoidal terms was assumed and
the parameters in this spatial form were then determined to
minimize the free energy which had its own parameters. These
latter parameters were then varied to obtain spatial modulation
of the height profile that appears similar to the experimental
data, but their main order parameter ψ is essentially sinusoidal
instead of being constant in the major side of the ripple.

Compared to the approach [28] in the previous paragraph,
Sec. VI simply takes the experimental height profile as given,
thereby avoiding having to assume a spatial functional form
with its undetermined parameters. There are again many pos-
sible heterogeneous terms (see the legend in Fig. 8) that could
be added to the free energy to provide a negative value of
GH in Eq. (24) that then gives a ripple phase and a lower
transition. Although this obtains suitable agreement with ex-
periment, it does not discriminate between these possible
heterogeneous terms. More unsatisfyingly, the development
in Sec. VI shares with all the continuum theories of the
ripple phase that such terms are quite phenomenological, lack-
ing underlying physical insight into the interactions of lipid
molecules that could account for them.

In contrast to our physical understanding of why there
should be a transition from a tilted gel phase to the fluid
phase, it is unclear to this author that there is even qualita-
tive understanding of what it is at the molecular level that
brings about the ripple phase and the lower transition. An
important objective is to find a physical criterion that limits
the length of the major side, and a new qualitative suggestion
has been made regarding kink-block structures in the dis-
cussion in [7]. Previous theories that focus on this objective
have involved splayed domains [22] and next nearest neigh-
bor interactions [54,55], but these, along with other notable

theories [20,56,57], provided ensuing ripple structures that
differ considerably from the ripple structure in Fig. 7. It could
be insightful if theories involving fundamental interactions
could discriminate between the different continuum hetero-
geneous forms that are mentioned in the legend to Fig. 8
but it is beyond the scope of this paper to attempt such
connections.

It should also be noted that most theories, including the
one in this paper, assume that it is sufficient to assign order
parameters just to the bilayer, but the experimental structure
in Fig. 7 suggests that one might have to consider an order
parameter for each monolayer with coupling between mono-
layers as proposed in [26,58]. Figure 7 also emphasizes that
the sample was a stack of closely spaced bilayers and that
raises the issue of whether interactions between bilayers that
have only been considered by a few theories [19,59,60] might
be essential for formation of the ripple phase and a lower
transition. There are reports that unilamellar vesicles (ULVs)
do not have a lower transition [61,62], while earlier papers did
report a calorimetric pretransition, although much attenuated
[63–65]. Visualizations of ripples have been reported in ULVs
[2] and also in mica supported double bilayers [66] and the
top layer on a stack of bilayers [67]. Although interbilayer and
intermonolayer interactions may be important for the detailed
structure of the ripple phase, the theory in this paper assumes,
along with most other theories, that a single bilayer model re-
mains relevant, especially for the main phase transition whose
enthalpy is adequately accounted for by chain melting [29].
This is being supported by experimental work [68].

Even though the particular continuum theory in this paper
does not provide the desired fundamental understanding of
what causes the ripple phase and the lower transition be-
yond invoking heterogeneous terms in a continuum model,
it successfully accommodates a great deal of experimental
data, more than previous continuum theories [20–28] that also
did not agree nearly so well with the more recent structure
in Fig. 7. Finally, this is an attempt to account theoretically
for the relatively recently observed, previously unexplained,
critical-like behavior of the tilt modulus [17].

ACKNOWLEDGMENT

The author thanks Dr. S. Mitra for comments on the
manuscript.

APPENDIX

Proof is given of the statement in the text that the φ4 theory
requires

KAG/AG = KAF /AF . (A1)

The area modulus KA is given by

KA/A := −(∂π/∂α)t = (∂2F/∂α2)t , (A2)

so Eq. (A1) follows if the second derivatives of F are equal
for the gel G and the fluid F phases at the main transition
temperature t1 and at their respective areas, which are zero for
the gel phase and α1 for the fluid phase. For both phases F and
(∂F/∂α)t equal zero. Together these require α1 = −2b3/3b4
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and b2t1 = 2b2
3/9b4. The second derivative,

(∂2F/∂α2)t = b2t + α(2b3 + 3b4α), (A3)

has the same value, b2t , in the gel phase because αG =
0, and in the fluid phase because αF = α1 = −2b3/3b4.
QED
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