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On Measuring Two-Party Partisan Bias in Unbalanced States

John F. Nagle and Alec Ramsay

ABSTRACT

Assuming that partisan fairness and responsiveness are important aspects of redistricting, it is important
to measure them. Many measures of partisan bias are satisfactory for states that are balanced with
roughly equal proportions of voters for the two major parties. It has been less clear which metrics mea-
sure fairness robustly when the proportion of the vote is unbalanced. We have addressed this by analyzing
past election results for four states with Democratic preferences (CA, IL, MA, and MD), three states with
Republican preferences (SC, TN, and TX) and comparing those to results for four nearly balanced states
(CO, NC, OH, and PA). We used many past statewide elections in each state to build statistically precise
seats for votes and rank for votes graphs to which many measures of partisan bias were applied. In ad-
dition to providing values of responsiveness, we find that five of the measures of bias provide mutually
consistent values in all states, thereby providing a core of usable measures for unbalanced states.
Although all five measures focus on different aspects of partisan bias, normalization of the values across
the eleven states provides a suitable way to compare them, and we propose that their average provides a
superior measure which we call composite bias. Regarding other measures, we find that the most seem-
ingly plausible symmetry measure fails for unbalanced states. We also consider deviations from the pro-
portionality ideal, but using it is difficult because the political geography of a state can entangle
responsiveness with total partisan bias. We do not attempt to separate intentional partisan bias from
the implicit bias that results from the interaction of the map drawing rules of a state and its political ge-
ography, on the grounds that redistricting should attempt to minimize total partisan bias whatever its
provenance.
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1. INTRODUCTION

It is well recognized, not only by political sci-
entists and politicians, that redistricting Congress

and state legislatures is important. Indeed, ordinary
citizens have engaged in drawing maps using free
public software.1 Not surprisingly, there are many
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criteria that can be considered in judging maps and
different people place different weights on the dif-
ferent criteria. This article focuses on two of those
criteria that we think are especially important,
namely, fairness and responsiveness.2

Our measures of bias are for total partisan bias, of
which overtly intended gerrymandering is just one
part. There is also underlying bias due to political
geography which is sometimes called unintentional
gerrymandering (Chen and Rodden 2013). That bias
is being quantified using ensembles of maps drawn
by computers that use the criteria that a state pre-
scribes in its rules.3 That provides a benchmark
that is then subtracted from the bias of the adopted
plan to estimate intended gerrymandering bias.
While this is what is traditionally required for
court cases (Grofman 2019; McDonald et al.
2018), we emphasize that unintentional bias is no
longer unintentional if it can be reliably demon-
strated that it occurs when following the state’s
rules or other informal criteria. This bias then be-
comes systemic bias due to the state’s map drawing
criteria interacting with its political geography. If
there is such systemic bias, there may still be
plans that are outliers in the ensemble that are none-
theless fair, and we believe a redistricting commis-
sion should adopt such a plan rather than an average
plan. However, if no relatively fair plan is possible
within the state’s rules, then we believe the state
should change its election laws to make fair plans
possible. Even if a state’s rules cannot be changed
in time, a redistricting commission and concerned
map-drawing citizens could still try to minimize
total bias and achieve responsiveness.4 As has
been reviewed by Stephanopoulos (2013), numer-
ous states have had language promoting fairness
and responsiveness, but these efforts have been
hampered by uncertainties in defining and measur-
ing these concepts, and that is what this article is
about.

This poses the question: Is it possible to test
whether a proposed redistricting plan for 2021
will be fair and responsive to the voters? Our
approach to this question is to analyze the enacted
redistricting plans for 2011 using many state-
wide election results applied to those maps.5

This article presents evidence that the use of past
election results can indeed produce quite precise
information that can be used for evaluating a
plan before it is implemented.6 We suggest that
this exercise can be relevant for the next round

of redistricting after the 2020 census, at least in
those states that have redistricting commissions
not intent on political advantage.

Even in states controlled by one party, the find-
ings in this article may help challenge unfair and
unresponsive plans in court. However, we again
emphasize that our work is not focused on challeng-
ing plans in courts that, in lieu of precise laws
regarding fairness and responsiveness, typically re-
quire evidence of partisan intent to overturn a map.7

Political geography, such as high density of Demo-
crats in cities, can also create unfair and unrespon-
sive maps when conventional redistricting criteria
such as compactness and not splitting political
subdivisions are adhered to (Rodden 2019; Nagle
2019). Our goal in this article is to elucidate mea-
sures of total bias and unresponsiveness, whatever
their provenance.8 Map drawers can then choose
how to balance these metrics with other criteria9

and a state legislature can be better informed
about whether its state election law should be
modified.

For states that are evenly balanced between
two dominant parties, a fair plan is clearly one

2Responsiveness is often called competitiveness, but while
closely related at the statewide level we prefer responsiveness
to voters over competitiveness for parties.
3Of course, implementation of the rules in the computer code
generally requires weighting of the different criteria, population
equality, compactness, splitting political subunits, communities
of interest, and minority protection. Remarks made by Katz
et al. (2020, 176) and McGann et al. (2016, 110) regarding
the use of computer drawn map ensembles to evaluate bias
are especially pertinent.
4This echoes the discussion of McGann et al. (2016, 222) that
‘‘Electoral fairness is not something that occurs ‘naturally’; it
has to be actively pursued,’’ and Altman and McDonald
(2018, 108) that a solution may be to explicitly incorporate po-
litical goals into the redistricting criteria.
5Statewide elections are the same for all precincts whereas re-
sults for Congress or state legislatures are subject to incum-
bency differences as well as uncontested elections.
6Although this conclusion will not come as a surprise to many
political scientists (e.g., McGann et al. 2016; McDonald et al.
2018; Gelman et al. 2012; Grofman and King 2007; Wang
et al. 2018; Stephanopoulos and McGhee 2018), the methods
and evidence presented here may still be of interest, especially
for the express focus on unbalanced states.
7See Best et al. (2020) for insightful concerns regarding reli-
ance on a partisan intent standard.
8Following the authors in the previous footnote 6. In particular,
‘‘the absence of intentional unfairness is not the same as fair-
ness’’ (Katz et al. 2020, 170).
9Criteria balancing has recently been discussed by Altman and
McDonald (2018).
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that is likely to result in half the seats for half
the votes.10 It has been rather more challenging
to decide what a fair plan is for a state in which
one party routinely obtains considerably more
than half the votes (McGhee 2014; Wang 2016;
Nagle 2017). It has appeared reasonable to assert
that symmetry is required in the sense that if party
A wins fraction SA of the seats with fraction V of
the vote, then party B should win the same frac-
tion SB = SA of the seats if it received the same
vote fraction (e.g., McGann et al. 2016, 56). A dif-
ference in seats DS = SA – SB between these two seat
fractions would then appear to be a reasonable mea-
sure of bias at vote V, with DS = 0 being no bias.
This has been recently named the b measure of
bias (Katz et al. 2020, 166). It obtains the value
DS(<V>), where the <V> means that we calculate
DS from the most likely statewide vote <V> deter-
mined by the average over many statewide contests
and from its counterfactual counterpart when the
vote fraction is reversed to 1 – <V>.11

In order to calculate DS(<V>), one must obtain a
seats-votes curve S(V) which estimates the fraction
of seats S for any statewide vote fraction V (Katz
et al. 2020, 165). We have calculated S(V) curves for
the congressional plans of 11 states. By using many
past election results, our S(V) curves have quite
small estimated uncertainties. Details of our method-
ology are presented in Supplementary Appendix A.

The seats-votes curves are quite interesting, and
they are appropriate for evaluating the responsive-
ness of a plan. However, section 3.2 of this article
shows that the b measure of bias is highly mislead-
ing for states with a dominant party. This came as a
shock to us, as symmetry and this way of evaluating
it would appear to be so fundamental to what should
be considered fair. We will show how and why the b
measure fails by examining the vote shares vj for
congressional districts j in the form of a different
kind of graph that we call rank-vote r(v) graphs.
The r(v) graphs are also quite precise because we
again use many election results. They are presented
in sections 2–4.

The r(v) graphs together with the S(V) graphs en-
able us better to portray and understand bias. Never-
theless, as has been well known for a long time,
there is still ambiguity in the single member district
system as to what is fair in states that have a domi-
nant political party. In such unbalanced states, bias
and responsiveness become intertwined (McGann
et al. 2016, 67). For example, if the two-party polit-

ical balance in a state is 60/40, then a plan that has
each district with a 60/40 preference would likely
elect all its representatives from the same party.
That would be fair under the aforementioned b sym-
metry principle.12 It may also be the only possibility
if the political geography of the state is completely
homogeneous.13 However, if the state’s political ge-
ography were completely heterogeneous, one could
draw a map that guarantees a 60/40 split in the
seats,14 but one could also combine the precincts
to give all seats to the dominant party or to any
split between these extremes.

Whatever one deems fair in the preceding exam-
ples, they illustrate that the political geography of a
state could clearly be important for assessing bias
and responsiveness in unbalanced states (Rodden
2019). We examine this further in Supplementary
Appendix C where we recall the ideal of proportion-
ality in section C.1. This leads us in section C.2 to a
method to measure bias in unbalanced states that
takes political geography into account. However,
that approach is difficult to apply to any single
plan, so the main line of analysis in this article pro-
ceeds differently in section 5. Global symmetry is
defined in subsection 5.1. Subsection 5.2 defines
a completely new measure (g) of bias, followed
by subsections elaborating on the declination (d)

10Technically, we estimate the voter preferences of the districts
in a plan. These should be balanced such that half the seats
would be won if equally attractive candidates are nominated
by the parties when the overall statewide vote is split evenly.
Of course, these conditions are unlikely to be met in any real
district which is why actual elections are important, so our
methods are therefore not designed to predict outcomes for in-
dividual districts. Nevertheless, for states with many districts,
such influences tend to average out, so it becomes possible to
predict overall outcomes more reliably. Even so, that is not
the goal. Rather, as mentioned by Cervas and Grofman (2020,
7), it is to test the fairness and responsiveness of a plan ab initio,
before specific candidates are chosen and before people and
parties decide how to allocate resources to the various contests.
It is also certainly not the goal to predict the vote fraction in a
future election, only to estimate what the overall preference
would be given the overall vote fraction V.
11Katz et al. (2020) define b(V) for all V and prefer to evaluate
at V = <V>, the most probable statewide vote or a range includ-
ing <V>. For succinctness, we will call this the b measure.
12One would have 40/60 preferences in each district if 1/3 of the
dominant party’s voters switch and then the other party would
win all the seats and therefore b = 0.
13If every precinct has the same 60/40 balance, all districts must
have the same 60/40 balance.
14This is most easily seen by defining complete heterogeneity
as 60% of the precincts having only dominant party voters
and creating districts only from like-minded precincts.
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measure (Warrington 2018) and the lopsided out-
comes (LO) measure (Wang 2016, 1263), and con-
cluding in section 5.5 by considering maximal
responsiveness as the primary goal. Comparisons
of these and more standard measures of bias are
given in section 6 which crucially demonstrates
that a core subset consisting of five of these mea-
sures of bias is substantially consistent across the
11 states, including unbalanced states, and we pro-
pose that suitably averaging their values into what
we call composite bias O provides a superior esti-
mate of bias. Subsection 6.3 also tests measures of
bias for durability as the statewide vote share
changes.

A general discussion ensues in section 7. Our
main result that several measures of bias agree for
unbalanced states as well as for balanced states
leads us to conclude that total bias can be reliably
measured in all states even though the political ge-
ography varies by state.

2. ANALYSIS OF FOUR POLITICALLY
BALANCED STATES

This section also describes some of our termi-
nology.

2.1. Example of Colorado

We begin with the state of Colorado (CO).
The average statewide vote <V> for 12 elections
in the time period 2004–2012 was 50.6% Demo-
cratic, making this a politically balanced state in
that time frame. Figure 1 shows the average two-
party Republican vote fraction vj for each congres-
sional district (CDj, j = 1–7) along with the standard
error of the mean over 12 elections.15 The districts
are rank ordered according to their placement j in
a list that is ordered by the vote. We call this kind
of graph the rank r(v) graph because it plots the dis-
trict rank versus the votes vj in the districts.16 Accord-
ing to the r(v) graph in Figure 1, CD1 and CD2 were
strongly Democratic and CD4 and CD5 were strongly
Republican in the 2011 CO map, whereas CD3, CD6,
and CD7 were more competitive.17

An r(v) graph displays the partisan preferences of
each district in a state. It is also often used to count
the partisan number of seats in the following too
simple way. In Figure 1, one might say that prefer-
ences18 in CO are for three Democratic seats, in
districts 1, 2 and 7, and four Republican seats, in

districts 3–6. However, that ‘‘all-or-nothing’’ assign-
ment of the integers 1 or 0 to each district doesn’t
take into account uncertainties in competitive dis-
tricts like CD6. Instead of ‘‘integer assignment,’’

FIG. 1. Colorado r(v) graph for the 2011 plan shows Repub-
lican district rank vs. Republican district vote. The slope of the
linear fitted line to the districts is 2.9. The horizontal uncer-
tainty bars are standard errors of the mean. The declination is
the difference in the angles of the two solid lines (vide infra).

15Following McDonald et al. (2018), we used data from Wolf
(2014). Lists of the chosen elections for all states are given in
Supplementary Appendix A, along with a brief description of
Wolf’s data. Along with others (Backstrom et al. 1990; Gronke
and Wilson 1999; McDonald 2014; Cervas and Grofman 2020;
Powell et al. 2020; Abramowitz et al. 2006), for the purpose of
determining political preference, we prefer statewide elections
data over actual congressional elections which do not uniformly
evaluate precincts in different congressional districts, partly be-
cause of incumbency and uncontested elections. Also, there are
more statewide races for more precise statistics.
16It is convenient to express the rank axis r as (j – ½) divided by
the number of districts in the state, where j is the rank in the or-
dered list, so the rank axis uniformly spans the range 0 to 1 for
all states.
17Indeed, districts 1, 2, 4, and 5 remain with the same party
when any of the statewide elections are applied to them,
whereas districts 3, 6, and 7 switched parties for different elec-
tions. Note that the uncertainty bars on the r(v) data in Figure 1
are standard errors of the mean which indicate the precision of
the partisan preferences of the districts. The standard deviations
are the square root of 12 (number of elections) greater; while
the standard deviation would better show the switching of par-
ties in CD3 and CD7 from different statewide elections, the
standard error of the mean better indicates the precision of
the district preferences.
18Notice that we do not write that CO would be expected to
elect three Democrats. By using statewide election results, we
deliberately do not take incumbency in a district into account
because the goal is to evaluate the partisan preferences of the
2011 map independently of political contingencies.
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we assign probabilities to districts thereby obtaining
fractional seats.19 Furthermore, Figure 1 is for only
one overall statewide vote share <VR> = 49.4%
Republican, the complement of the Democratic
two-party vote share. What is also needed is a differ-
ent kind of figure, namely, the seats-votes S(V)
graph, which estimates the fraction of seats S for
any two-party statewide vote fraction V. We use the
proportional shift method to adjust each district
vote vi as the statewide vote shifts.20 Our S(V)
graph for CO is shown in Figure 2.

An important result from S(V) curves is the
responsiveness of a map. How many seats are
expected to change as the statewide vote V
changes around V is just the slope dS/dV of the
S(V) curve at V. Of course, the slope varies with
V if the curve is not linear and then the most rele-
vant measure of responsiveness is r = dS/dV at
V = <V>. Because the S(V) curve for CO is quite
linear, however, its responsiveness is nearly the
same for all V. An important finding for the CO
2011 plan is that its responsiveness is quite high,
namely, r = 3.3.21 This is far higher than the re-
sponsiveness r = 1 idealized by proportionality
and even for the efficiency gap (EG) (McGhee
2014; Stephanopoulos and McGhee 2018) which

idealizes responsiveness of r = 2. It is closer to
the classical cube ‘‘law’’ (Kendall and Stuart
1950) that has r = 3 at V = 0.5.

Each solid circle in Figure 2 shows an unshifted
result from one election. Already, those points could
be simply fit to provide a reasonable S(V) curve.
Our method is more precise, as is indicated by the
standard errors of the mean shown as vertical bars
on the S(V) curve.22 The diamonds in Figure 2
show actual congressional seats for the 2012–2018
district elections. These agree with the S(V) curve
as well as could be expected, given that they must
be integers in actual elections, and that they are af-
fected by contingencies such as incumbency.

2.2. North Carolina

We turn next to North Carolina (NC), another
nearly balanced state with Democratic average vote
<V> = 51.5% in the statewide elections in our data
set. Figure 3 shows its r(v) graph. It is very far from
linear as shown by the dash-dot line, which is the
best linear fit, so the corresponding slope of 1.85 is
meaningless as a measure of responsiveness. Figure 3
emphasizes the well-known fact that the 2011 map for
NC has three heavily packed Democratic districts and
ten safe Republican districts that are not packed.

An interesting measure of bias is the declination
d, which Warrington (2018) has defined as the dif-
ference in the angles of the two straight lines joining
the open circles in Figures 1 and 3.23 Packing

FIG. 2. S(V) graph showing Democratic seat fraction prefer-
ence vs. Democratic votes fraction curve for the Colorado 2011
enacted plan as a continuous solid curve. Each election e gen-
erated an Se(V) curve (not shown) using proportional shift
and fractional seats, and the shown solid S(V) line is the aver-
age with standard error of the mean uncertainties as solid verti-
cal bars. The solid circles are the results of each statewide
election applied to the plan. The star shows the estimated seat
fraction for the average statewide vote <V> for all elections.
The diamonds show the fraction of seats won in the actual con-
gressional contests carried out under the 2011 map.

19For example, a district that has a 50/50 partisan preference
should count as half a seat for both parties. Details for fractional
seat assignment and other technical aspects in this paragraph
are given in Supplementary Appendix A. Fractional seats
have been employed in various ways by Gelman and King
(1994, 532) and Cottrell (2019), and the concept is nicely
explained by McGann et al. (2016, 58–60) where the 5% vari-
ation that is employed in our study was suggested.
20Although a proportional shift (Nagle 2015; 2019) is concep-
tually superior to the commonly used uniform shift, the differ-
ence between the two is not consequential for the results in this
article as is shown in Supplementary Appendix B.
21This value of r means that a swing of 5% in the statewide vote V
would change the estimated seat fraction by 16.5%. For CO with
sevendistricts, that is anet swingofessentiallyonecongressional seat.
22Also, our method does not require choosing a fitting function,
such as a bilogit (King and Browning 1987). Although a linear
fit to the circles in Figure 2 would work well enough for CO,
other states are considerably nonlinear.
23Each outer circle locates the average vote for each party’s
seats and its average district rank. The middle open circle in
Figures 1 and 3 locates the rank that divides Democratic won
seats from Republican seats. More details regarding this mea-
sure are provided in section 5.3.
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Democrats into a few districts moves the middle
open circle in Figure 3 to smaller ranking of the dis-
tricts won by Democrats which increases the differ-
ences in the angles of the lines connecting to the
average party votes, so a positive value of d corre-
lates with an advantage for Republicans. This mea-
sure gives a large positive d for NC, in contrast to a
much smaller value for CO.

Figure 4 shows the S(V) curve for NC.24 As it is
derived from the data in Figure 3, it too is highly
non-linear. Again, the individual statewide election
results shown by solid circles agree well with the
S(V) curve. So do the actual congressional election
results for 2012–2018, but these also show that NC
voters tended to vote more conservatively for Con-
gress than for the statewide elections; the latter av-
erage <V> is shown by the star whereas the range of
the actual congressional statewide vote average is
centered near 0.48. This is important for evaluating
responsiveness. The slope of the curve at <V> is
quite high, r = 4.0 in Figure 4. However, the slope
is close to zero near V = 0.45 which is the low end
of the actual range of congressional elections,
thereby indicating an unresponsive map favoring
Republican incumbents in ten districts.

We will use Figure 4 to illustrate our definitions
of several other quantities of interest. One such is
the slope R of the arrow pointing from the center
of the graph to the star on the curve.25 A negative
value of R = -10 signifies an anti-majoritarian result,

fewer than half the seats for more than half the
vote.26 For unbalanced states R is positive and can
be thought of as a winner’s bonus. For want of a bet-
ter name, it may be thought of as an overall respon-
siveness.

An important seats-based measure, much
employed in the literature, is the seats bias defined
as the difference in the fraction of seats from 0.5
when V = 0.5. In this article we will designate this
measure by aS.27 Its magnitude is the length of the
vertical arrow in Figure 4, favoring Republicans
by 20%. An important votes-based measure will
be designated aV; it focuses on the estimated frac-
tion of the vote for 50% of the seats. In Figure 4,
54.3% of the vote would have to be won by the
Democrats in NC to win half the seats. We designate

FIG. 3. Republican district rank vs. Republican district vote
r(v) graph for North Carolina 2011 plan. The difference in
the angles of the two solid lines is the declination d which
equals 57.3o using all-or-nothing seats.

FIG. 4. Seats-Votes S(V) graph for the North Carolina 2011
enacted plan. The solid S(V) curve was obtained using propor-
tional shift and fractional seats. Each contest is the result of
each statewide election applied to the map. The star shows the
average statewide vote for all elections. Diamonds show actual
outcomes. The arrows indicate measures defined in the text.

24The reader may wonder why we have chosen to use Republi-
can (R) rank and votes axes in our r(v) graphs and Democratic
seats and votes in our S(V) graphs. The reason is that doing so
makes the r(v) and S(V) curves look more alike. For example,
the median district with rank 0.5 has R vote greater than 0.5 in
Figure 3 and the Democratic vote V to obtain half the seats is
greater than 0.5 by very nearly the same amount. Indeed,
using all-or-nothing seats for each district and uniform shift,
the r(v) curve with R axes becomes an S(V) curve with D axes.
25R = (S(<V>) – ½)/(<V> – ½). It is quite different from respon-
siveness r which is the tangent to the S(V) curve given by the
derivative dS/dV at <V>.
26The 2018 actual congressional election also was anti-
majoritarian as shown by one of the diamonds in Figure 4.
27aS is also the same as b(0.5).
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the aV value to be this vote at S = ½ minus 0.5; it
is the length (in %) of the horizontal arrow in
Figure 4.28

2.3. Other balanced states

The results in the previous section clearly iden-
tify the 2011 NC map as unfair to Democrats and
unresponsive to voters. We have also drawn r(v)
and S(V) graphs for the 2011 maps of two additional
fairly evenly balanced states, Pennsylvania (PA) and
Ohio (OH).29 The aS, aV, d, and R values for PA and
OH are rather similar to NC in being unfair and anti-
majoritarian, and quite unlike the results for CO
which appear to be both fair and responsive.

Table 1 collects numbers for the quantities of in-
terest mentioned in this section for balanced states.
This table also shows values of other quantities that
will be defined in subsequent sections. It further ex-
hibits results for several unbalanced states to which
we turn in the next two sections. Uncertainties in
many of the quantities can be discerned by the
reader from the error bars in the S(V) graphs. For ex-
ample, typical uncertainties in aS are less than 1%.
Uncertainties have not been estimated for d; the
values in Table 1 were calculated using fractional

district seats and votes which differ from the values
in the legends of our r(v) graphs which used the
original definition of Warrington (2018) that used
all-or-nothing seat assignment.

3. REPUBLICAN MAJORITY STATES

This section examines politically unbalanced
states with a substantial Republican majority.

3.1. Tennessee and the ‘‘Wall’’

Tennessee (TN) has an average D vote <V> =
0.416. Its r(v) graph in Figure 5 shows a highly
Democratically packed CD9, while CD5 leans
Democratic and there are seven safe Republican
districts that figuratively form a ‘‘wall.’’ The graph
is quite non-linear and this and the wall are reflected
in the large positive value of the declination angle d.

Table 1. A List of the States and Many of the Quantities of Interest Obtained in This Article

State <V> S(<V>) R r z aS aV d GS g O b LO PR EG

CA 59.2 73.6 2.6 2.1 0.3 -1.9 -0.6 -3 -1.8 -4 -0.6 2.9 9.2 -14 -5
IL 60.0 78.8 2.9 3.1 0.1 5.8 1.6 6 1.9 2 1.0 1.2 11.7 -19 -9
MD 59.3 85.7 3.7 1.0 0.8 -5.2 -1.0 -33 -2.6 -26 -2.4 1.4 4.1 -26 -17
MA 60.0 96.0 4.6 1.9 0.3 6.4 1.0 NA 2.0 -27 1.2 -2.9 NA -36 -26
CO 50.6 51.3 2.2 3.9 0.2 1.1 0.3 0 0.8 1 0.2 1.0 0.3 -1 0
NC 51.5 35.1 -10.0 4.0 0.1 19.8 4.3 37 6.2 21 4.0 19.0 11.1 16 18
OH 51.3 41.4 -6.0 4.5 0.1 13.8 3.1 22 4.1 14 2.7 13.2 6.9 10 11
PA 52.9 43.6 -2.2 4.1 0.1 16.1 4.4 24 5.5 18 3.4 14.5 8.7 9 12
TN 41.6 19.2 3.6 0.8 1.1 16.2 2.9 35 6.1 24 3.7 -2.3 0.6 22 14
TX 40.4 27.8 2.3 1.1 0.7 5.0 1.2 17 5.2 12 1.9 -7.5 -3.0 13 3
SC 43.0 16.1 4.9 0.9 1.0 14.1 2.3 48 5.0 28 3.7 0.9 4.2 27 20

Values are expressed as percentages except for the d angle and the responsiveness measures R, r, and z. Positive values for measures of bias favor
Republicans.
� <V> is the average statewide two-party vote for Democrats.
� S(<V>) is fractional Democratic seats at <V>.
� R is an overall measure of responsiveness or winner’s bonus defined in Fig. 4.
� r is the slope of the S(V) curve at <V>.
� z is a measure of responsiveness defined in section 5.5.
� aS is half the difference in party seats at V = 0.5.
� aV is the excess vote required for half the seats.
� d is the value of the declination angle calculated using fractional seats and votes.
� GS is a global symmetry measure described in section 5.1.
� g is the fair difference in party seats at <V> using r and defined in section 3.1.
� O is the average of the five previous measures, each normalized to the aV scale.
� b gives the counterfactual symmetry difference in seats, defined in the introduction.
� LO shows values for the lopsided outcomes measure described in section 5.4.
� PR is the deviation from proportionality S(<V>) – <V>.
� EG is the efficiency gap (McGhee 2014) S(<V>) – 2<V> + ½ .

mM (not shown in table) is the median minus mean (McDonald and Best 2015).

28The goal of the aV metric, which is based on the S(V) graph,
is similar to that of the popular median minus mean metric
(mM) (McDonald and Best 2015) which is based on the data
in the r(v) graph.
29These and graphs for other states will be available in Supple-
mentary Appendix F.
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The corresponding S(V) curve in Figure 6 agrees
well with the statewide races (solid circles) and
it agrees as well as can be expected with the ac-
tual congressional results given that those are con-
strained to be integers and that the incumbency
effect may have helped retain the second Demo-
cratic seat. The values of the seats-based mea-
sure aS and the votes-based measure aV given in
Table 1 are similar to those of the balanced states
NC, OH, and PA. This comparison suggests that TN
is also biased against Democrats. Unlike those states,
R is positive, and there were no anti-majoritarian re-
sults (solid circles in Fig. 6) where more than half
the votes yielded less than half the seats. The large
value R = 3.6 gives a substantial winner’s bonus of
two seats compared to R = 1 proportionality. The
much smaller value of the responsiveness r com-
pared to all the other states in Table 1 is consistent
with the drawing of mostly safe seats for both parties
as would be done in a bipartisan gerrymander.

Figure 6 introduces a new measure of bias which
we will identify as g. It uses the responsiveness r
evaluated at <V> to calculate a seat fraction Sr. In
Figure 6, an arrow emanates from the fair point
at S = 0.5 for V = 0.5 with slope r. The end of the
arrow at V = <V> locates Sr which is shown as a
solid square in Figure 6. The seat difference be-
tween Sr and S(<V>) is defined as g. Alternatively,
Figure 6 shows an arrow with slope r emanating
from the S(<V>) point to a projected S(0.5) value,
and then g is the difference compared to the fair
S(0.5) = 0.5 value. Because g uses both responsive-
ness and seats, it could be described as a ‘‘respon-

siveness & seats’’ measure. A full discussion of
the merits and characteristics of this measure will
be deferred to section 5.2. Here we will only note
that it is computed entirely from data at the state-
wide vote <V> and so it does not employ counter-
factual shifting.

3.2. Flaw in the b measure

We now address the use of symmetry to estimate
bias according to the measure defined as b in the
introduction. The S(V) curve in Figure 6 gives
S(<V>) = 0.192 for Democrats with <V> = 0.416.
The counterfactual symmetrically opposite vote is
1 – <V> = 0.584, and at that value on the S(V)
curve the fraction of D seats is 0.857, so the coun-
terfactual fraction of R seats is 0.143. As this is
less than the factual D seat S(<V>) = 0.192, the
symmetric measure of bias b posits that TN is bi-
ased in favor of Democrats, contrary to all the
other measures. As this differs from expectations,
one might question the accuracy of our S(V) meth-
odology.30 However, the small uncertainties we

FIG. 5. Rank-vote graph for Tennessee.
FIG. 6. Seats-votes graph for Tennessee.

30Of course, our value for b was obtained from a model for
shifting the vote. The alternative uniform shift model essen-
tially agrees by giving a similarly small value for b, although
of the opposite sign. It may also be noted that TN is unusual
compared to other Republican majority states in that there
was one election, 2006 Governor, that had a strongly Demo-
cratic vote share of 0.70. This outlier election is responsible
for giving the visibly large uncertainties for 0.3 < V < 0.45 in
Figure 6 and also for the rather larger standard errors of the
mean for the districts in Figure 5 compared to other states.
Nevertheless, our inclusion of this election demonstrates the ro-
bustness of our S(V) curves over a large range of vote share.
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obtain for our S(V) curves have led us to reconsider
the b measure and to conclude that it gets con-
founded in unbalanced states.

The key to understanding the flaw in the b mea-
sure comes from the r(v) graph. If the vote were to
shift strongly Democratic, the entire wall of safe
Republican districts would fall. This is in contrast
to the sole highly packed Democratic district that an-
chors S(<V>). A simple toy example illustrates this
phenomenon. Consider a state with ten districts,
nine of which have party A preference of 0.65 and
one which has party A preference of 0.25 so the
state has an overall preference <VA> = 0.61 for
party A.31 Party A would then be expected to obtain
nine seats with this set of preferences. For simplic-
ity let us assume for the counterfactual that each
district undergoes a uniform swing to party B by
DV = 0.22 which achieves the counterfactual state-
wide party B preference VB = 0.61. Then there are
nine districts with party A preference of 0.43 and
one district with preference 0.03. For simplicity, let
us use all-or-nothing district assignment which
would then give party B ten seats in the counterfac-
tual. The b measure would then draw the absurd con-
clusion that this state is biased in favor of party B
because it would have obtained more seats if it had
counterfactually received the same statewide vote
fraction as party A actually received.32 This illus-
trates that by treating the two parties differently—
most clearly illustrated by asymmetrical r(v) graphs
with a significant angle of declination—map draw-
ers can achieve advantage for their party while the
simple b measure of symmetry suggests the oppo-

site. For a comparison that is relevant for the aS

measure, a uniform shift of 0.11 to V = 0.5 would
still give nine seats to party A using all-or-nothing dis-
trict seat assignment or 7.6 seats using fractional seats.

We wish to emphasize that this section only crit-
icizes the b measure of bias, not the fundamental
concept that fairness requires symmetry, as will be-
come apparent in section 5.1.

3.3. Texas and South Carolina

We have also analyzed two other Republican major-
ity states, Texas (TX) and South Carolina (SC). Results
shown in Table 1 for the aS and aV measures for SC are
similar to those for TN and the value of d is even higher.
The same measures for TX are somewhat smaller, but
still biased in favor of Republicans. In contrast, the b
value is nearly zero for South Carolina and even
would assign substantial bias in favor of Democrats
in TX, again indicating that the b measure is flawed.33

FIG. 7. r(v) graph for Texas.
FIG. 8. S(V) graph for Texas.

31This assumes that all districts had the same number of voters,
i.e., no turnout bias. Effective turnout bias is small in this study
as is documented in Supplementary Appendix A.2.
32Using proportional shift and fractional seats slightly alleviates
the flaw in the b value by giving 9.6 instead of 10 seats to party
B in the counterfactual. We also note that other examples reveal
that the unfairness that is not diagnosed by the b measure comes
not from packing minority party districts but from building a
wall of majority party seats that are safe but not packed.
33Our data for SC and TX also differ from that of NC in that there
was no statewide election won by the Democrats. That means
that the counterfactual S(1 – <V>) had to be extrapolated well be-
yond the vote share range of the available elections, in contrast to
the less uncertain interpolation within the range of available vote
share that was done for TN. Nevertheless, the general shapes of
the extrapolated S(V) curves for SC and TX are quite similar to
the one for TN as shown in Figure 8 for TX.
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Included here as Figure 7 is the r(v) graph for TX.
It also exhibits a wall of safe Republican districts
in the 0.6 < V < 0.7 range, although the TX wall
is not as steep or high as the TN wall. The S(V)
graph in Figure 8 deviates from linearity, although
somewhat less than the S(V) graph for TN.

4. DEMOCRATIC MAJORITY STATES

4.1. California and Illinois

It is widely recognized that California (CA) has
been a leading state for redistricting reform, so it
is especially interesting to examine its congressio-
nal plan using our methods. The r(v) graph in Fig-
ure 9 is basically linear with a small value of the
declination d favoring Democrats. The linear fit to
the r(v) data gives a slope of 2.1. This is the same
as the responsiveness r shown in the S(V) graph
in Figure 10.34 The winner’s bonus R = 2.5 for CA
is considerably larger than proportionality (R = 1)
and somewhat larger than the EG (R = 2), but still
considerably smaller than the winner’s bonuses in
TN and SC. The aS and aV measures in CA favor
Democrats, but less so than they favor Republicans
in TX and much less than in TN and SC as shown in
Table 1.

We have also analyzed the 2011 Illinois (IL)
plan. Table 1 shows that the IL plan is somewhat
more responsive than CA; that gives a relatively
larger Democratic seat fraction in IL because both
states have nearly the same average <V> vote. Its
r(v) graph is not as linear as for CA, but its d is

smaller and even favors Republicans. There appears
to be a soft wall of six Democratic districts centered
near 0.43 R vote in the r(v) graph, but this wall ap-
pears to be close enough to V = 0.5 such that, along
with the extreme packing of Democrats in other
Chicago districts, IL has small positive aS and
aV values favoring Republicans. (Supplementary
Appendix F contains the IL graphs.) We concur
with the analysis of McDonald et al. (2018, 323)
who wrote ‘‘Despite the outcries of unfairness in
some quarters of the press and a court seeing a ‘bla-
tant political move’ . Democrats’ self-help maneu-
vering was largely a matter of tamping down some
of the pro-Republican effects of residential pat-
terns.’’ Similar comments were written by McGann
et al. (2016, 105).

4.2. Maryland and Massachusetts

We now turn to two other Democratic majority
states that differ substantially from CA and IL and
also from each other. Maryland (MD) is widely
regarded as having been intentionally gerryman-
dered by Democrats. Its r(v) graph in Figure 11
shows that the infamous CD1 is a safe Republican
district, and CD6 leans substantially Democratic.
The complaint is that CD6 could be made more com-
petitive or even leaning Republican if Democratic

FIG. 9. r(v) graph for California.
FIG. 10. S(V) graph for California.

34Our S(V) curve agrees quite well with one drawn by McGann
et al. (2016, 78), although our uncertainties are smaller. They
also provide values for the aS measure for all states in their
Table 3.A.2. Our value for CA is in excellent agreement and
values for other states are also satisfactory considering that
we use statewide elections and they used district elections.
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voters were exchanged with R voters in adjacent
CD8. That would shift the middle declination circle
down in Figure 11 which would reduce the very
large negative value of d and it would soften the al-
ready soft wall consisting of CD5, CD8, CD2, and
CD3.

The S(V) curve in Figure 12 shows that the win-
ner’s bonus R is quite large but the responsiveness
r is much smaller, consistent with drawing rela-
tively safe districts for both parties. Figure 12
also shows that the aS and aV measures favor
Democrats, although Table 1 shows that the mag-
nitudes of these bias values are much smaller
than the corresponding values for five states that
these measures purport to be biased in favor of
Republicans.

Massachusetts (MA) has a similar two-party av-
erage vote share in our data compared to MD, but
MA has not elected any Republicans to Congress
under its 2011 plan whereas MD has always elected
one. The r(v) graph for MA in Figure 13 has a
highly packed Democratic district CD7 and a wall
of eight Democratic districts with Republican sup-
port in the range 0.35 < vi < 0.45. A linear fit just
to this wall gives a large pseudo responsiveness of
7.3. The S(V) graph in Figure 14 shows that a
large winner’s bonus like R = 4.6 results in the dom-
inant party obtaining nearly all the seats when <V>
differs from 50% by as little as 10% of the vote.
There were ample elections near V = 0.5 to give
credibility to the aS and aV measures which actually

FIG. 11. r(v) graph for Maryland.

FIG. 12. S(V) graph for Maryland.

FIG. 13. r(v) graph for Massachusetts.

FIG. 14. S(V) graph for Massachusetts.
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indicate bias in favor of Republicans in the 2011
MA plan.35 On the other hand, the aS and aV mea-
sures indicate bias for the Democrats in the MD
plan, but that plan provides for one Republican seat
whereas the MA plan essentially guarantees none.

5. ADDITIONAL IDEALS AND MEASURES

The MA and MD comparison just described
illustrates the difficulty with assessing bias in unbal-
anced states. We have pursued this issue in Supple-
mentary Appendix C by considering the impact of
political geography. While we are enthusiastic
about the concepts described there, the difficulty
in carrying out the associated procedure motivates
our consideration in this section of simpler mea-
sures in addition to the aS, aV, and b measures
already introduced. Each of these additional mea-
sures implies an ideal mathematical form for zero
bias that will be characterized.

5.1. Symmetry and the global GS measure

The concept that a district plan should treat par-
ties symmetrically is appealing, so we have been
disappointed that the b measure applied to S(V)
curves fails as emphasized in section 3.2. However,
there are other ways to measure symmetry besides
focusing just on the average statewide vote at <V>
and its counterfactual at 1 – <V> as is done in the
b measure. In Supplementary Appendix D we de-
scribe a way to look at symmetry in the r(v) graphs.
However, that does not lead to a measure that we use
in this article, so here we go directly to a measure of
bias that uses global symmetry of the S(V) graph.

The ideal for global symmetry is simply that
b(V) = 0 for all V. To see how global symmetry
bias (GS) is measured for plans that do not have
global symmetry, consider the example in Fig-
ure 15. The solid line in Figure 15 shows the
S(V) curve for Democrats in South Carolina and
the dashed line shows the S(V) curve for Republi-
cans. The two curves differ considerably. Recall
that we defined DS(V) as half the difference
SD(V) – SR(V) because then DS(½) is the aS

value of bias and DS(<V>) is the b value. In Fig-
ure 15 b is much smaller than aS because <V> is
close to the point where the S(V) curves for the
two parties cross.

If it were not for our analysis of the r(v) graphs in
section 3.2, one might say that it is unclear from

Figure 15 that the aS measure is more valid than
the b measure. However, in the case of uniform
shifts the area identified by G1 in the figure where
DS(V) is negative has identical size to the sum of
the two areas identified by G2 and G3 where
DS(V) is positive.36 Therefore, when the aS value
is large, there must be crossover values of Vc s ½
at which DS(Vc) = 0. In the cases of SC, MD, and
TN, <V> is close to a crossover Vc. Similar cross-
over points at similar values of Vc also occur in
states like NC, OH, and PA that are clearly biased;
this is a further indication that aS is a better mea-
sure of bias than b.37 Nevertheless, it would be bet-
ter not to have to choose a value of V at which to
measure bias, especially when the chosen V is sub-
stantially different from <V>.

The total shaded area GS = G1 + G2 + G3 between
the two S(V) curves in Figure 15 provides such an
alternative measure of bias that avoids this criticism

FIG. 15. Comparison of the S(V) curves for the two parties in
South Carolina. The solid line shows the Democratic seat frac-
tion versus the Democratic two-party vote fraction and the
dashed line is the corresponding curve for Republicans. Each
curve is the inversion of the other. Half their difference at
V = 0.5 is the aS value of bias and at V = <V> it is the b value
of bias. The grey area between the two curves is the GS value
of bias.

35McGann et al. (2016, 77) and McDonald et al. (2018, 321)
also noted a Republican bias in the MA plan.
36When the proportional shift is used to construct the S(V)
curves, the equivalence of these areas is not exact, but it is
still approximately true.
37Likewise, the aV votes measure of bias is better than evaluat-
ing the difference in votes required to obtain the same number
of seats at the statewide <V>.
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of the aS and b measures.38 Because it integrates
over all values of the vote V, it does not depend
on making a choice of the value of V as the other
seats-based measures do. Because the difference be-
tween the two curves can also be viewed as the dif-
ferences in votes needed to obtain seats, GS is best
described as a combination of seats-based and
votes-based measures.39

5.2. New g measure of bias

A major concern with the aS and aV measures of
bias for unbalanced states is that they do not evalu-
ate near the average statewide vote <V>. The next
three subsections turn to three measures of bias
that do evaluate exclusively at <V> and that there-
fore do not employ counterfactual V.

This subsection elaborates on our g measure
newly introduced in section 3.1 with values reported
in Table 1 and shown graphically in Figures 6, 8, 12,
and 14. It is rooted on the basic fairness principle of
half the seats for half the vote V. It calculates an
ideal fraction of seats

Sq ¼ ½þ q < V >�½ð Þ: ð5:2:1Þ

Equation (5.2.1) is rather like the ideal fraction of
seats calculated by traditional proportional repre-
sentation (PR) and by the efficiency gap (EG) ex-
cept that PR imposes the value r = 1 and the
efficiency gap imposes r= 2. In contrast, the g mea-
sure uses the responsiveness determined at V = <V>,
thereby avoiding an arbitrary choice of the r factor,
instead basing it on an empirical value at <V>. Then,
similarly to PR and EG, the g measure of bias is the
difference between the ideal fraction and the mea-
sured fraction

c ¼ Sq�S < V >ð Þ
¼ ½þ q < V >�½ð Þ�S < V >ð Þ: ð5:2:2Þ

As g depends upon both responsiveness and seats, it
could be described as a responsiveness & seats or
R&S bias, although writing the simple g symbol is
more convenient. It is also useful to recall the defi-
nition of R = (S(<V>) – ½)/(<V> – ½) and rewrite

c ¼ ðq�RÞ < V >�½ð Þ: ð5:2:3Þ

Another favorable feature of the g measure is that
it especially penalizes bipartisan gerrymandering,
which is characterized by a smaller value of r. In

unbalanced states R is generally larger than r. For
Democratic states with <V> greater than ½, a smaller
r makes g even more negative, appropriately report-
ing more bias. For Republican states with <V> less
than ½, a smaller r makes g even more positive,
again appropriately reporting more bias.40

Next, we consider what kind of S(V) curves give
g = 0. An important class is unbiased linear curves
that pass through the graphical center (½,½) with
whatever slope R = r. CA, IL, and CO are essen-
tially in this class. However, a general symmetric
S(V) curve will have values of g that vary with V,
usually with g becoming negative as <V> increases
from ½. Of greater concern is non-symmetric curves
which may have g = 0 at special values of <V>.41

The most problematic of our states in this regard
is MA. Figure 14 shows that g(V) = 0 at V = 0.56
and, as V increases to <V> = 0.6, it indicates large
negative bias in favor of Democrats. Although one
might be inclined to welcome this as a common-
sense result, note that the S(V) curve eventually
has to curve over at large V which necessarily
gives a large negative g. In the case of MA this oc-
curs already at <V>, so we are inclined to discount
the g result for MA. However, for other unbalanced,
biased states like TN, g(V) has nearly the same
value for all V near <V> because S(V) has a nearly
constant slope in that region. We will return to
a quantitative analysis of the g measure for other
states in section 6.3.

5.3. Declination measure d

This measure (Warrington 2018; 2019) utilizes
the two solid lines that we have included in our

38GS was previously named the geometric measure of bias BG

(Nagle 2015, 351) as it is the percentage of the geometric area
within the total seats/votes box defined by 0 to 1 on both axes.
Prof. Grofman has kindly brought to our attention that GS is a
special case of one of the eight measures in Grofman (1983,
308).
39Because the integral of the signed difference between the two
curves is zero in the case of uniform shift and small even for
proportional shift and fractional seats, GS is defined to take
the absolute value of the difference which is the total shaded
area in Figure 17. Which party is favored by the necessarily
positive value of GS is then taken to favor the party favored
by aS and aV. This can lead to ambiguity of the sign when
the difference between the two curves is small, but such cases
would be deemed acceptably fair with either sign.
40This effect also applies in balanced states.
41This occurs when a straight line drawn from (0.5,0.5) is tan-
gent to the S(V) curve at V.

128 NAGLE AND RAMSAY



r(v) graphs. Although the difference in angles d be-
tween these two lines does not translate to the seats
and votes quantities that most people would like to
know, we like this construct because it visually il-
lustrates walls of safe seats that are characteristic
of unfair maps. In this subsection we review what
the ideal declination (d = 0) requires for S(V) partly
because it has interesting similarities and contrasts
with the measure in the next subsection.

The basic definition of the declination depends
upon just a few quantities in the r(v) graph. Figure 16
illustrates these quantities; rA and rB are the average
ranks of those districts that are won by parties A and
B respectively, and vA and vB are the corresponding
vote shares.42 Equating the angles of the two lines
results in the ideal d = 0. When the statewide vote
for party A is VA, straightforward algebra derives
the following ideal d = 0 relations (Campisi et al.
2019, 375; Katz et al. 2020, 175)

½�vBð Þ� vA�½ð Þ ¼ ½�VA ð5:3:1Þ

and

SA�½ ¼ VA�½ð Þ= 4vA�2ð Þ� 2VA�1ð Þ½ �: ð5:3:2Þ

Equation (5.3.2) emphasizes that the seat fraction
required for unbiased plans by the d measure de-
pends not only upon the vote VA but also upon an
additional characteristic, the average vote vA.43

Figure 17 shows the ideal S(V) curves for two val-
ues of vA, 0.6 and 0.7.

Figure 17 shows that party A wins all the districts
if vA = 0.6 (dashed curve) compared to 2/3 of the
districts if vA = 0.7 (solid curve).44 Any measure
that allows this kind of variation means that mea-
sure violates a primary principle for measuring
bias (McGhee 2017; Cover 2018), namely, that a
partisan map drawer not be allowed to increase
the seat fraction for a given vote fraction without
incurring a change in the value given by the mea-
sure.45 In the case of the declination measure,
when party A is in power and expects VA > ½ , it
can increase SA for the same VA by decreasing vA

with no change in d. Fortunately, decreasing vA

FIG. 16. Definitions of quantities rA, vA, rB and vB used to
calculate ideal seats values for the d measure of bias. The values
shown are the same as those for NC in Fig. 3.

FIG. 17. Party A S(V) curves for ideal declination (d= 0) and
ideal lopsided outcomes (LO = 0, next subsection) for two val-
ues of vA which is the average voter preference in districts won
by party A.

42The rank of the middle circle is twice the average rank rB of
seats won by party B, so this is SB. Note that the district votes
won by a party can have many distributions, such as (1) all hav-
ing the same value or (2) all being quite different. The lines
themselves are suggestive that the district votes are linear
with their rank, but this is not generally required, although
such linear r(v) graphs do result in the declination not varying
with the statewide vote when the uniform shift is employed.
As noted earlier, we prefer to use fractional seats and vote
shares in our calculations for Table 1, but it is convenient to
use the simpler all-or-nothing seat assignment method (War-
rington 2018) in Figure 19 and our r(v) graphs.
43Or vB, but that is determined from Eq. (5.3.1) once VA and vA

are given.
44Using Eq. (5.3.1) the corresponding packing fractions 1- vB

for party B are 0.5 and 0.4 for vA = 0.6 and 0.7, respectfully.
These numbers emphasize that packing of party B is not
allowed by the declination ideal.
45Katz et al. (2020, 175) have similarly criticized the d measure.
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also increases the competitiveness of the districts
and a partisan party A map drawer would be un-
likely to reduce vA low enough to create competi-
tive districts when party A is the majority party.
Unfortunately, when VA < ½, Figure 17 shows that
party A obtains more seats by having all districts
more packed, in which case party A would encour-
age a bipartisan gerrymander while satisfying d= 0.

5.4. Lopsided outcomes measure of bias

This measure focuses on discriminatory packing.
The ideal for this measure is that the excess vote
share for districts won by party A averaged over
those districts (namely, vA – ½ in the previous sec-
tion) equals the excess vote share for districts won
by party B averaged over those districts (namely
½ – vB). Then, the measure of packing bias is46

LO ¼ ð½�vBÞ� vA�½ð Þ: ð5:4:1Þ

A positive value of LO would indicate greater pack-
ing of party B voters and would therefore indicate a
bias in favor of party A.

The ideal LO = 0 and Eq. (5.4.1) require that vB =
1 – vA. Together with the relation VA =vASA + vBSB,
simple algebra gives the seats-votes relation,

SA�½ ¼ VA�½ð Þ=2 vA�½ð Þ: ð5:4:2Þ

Figure 17 shows the S(V) curves for two values of
vA. Just as for the d measure in the previous subsec-
tion, given statewide vote VA in an unbalanced state
with VA > ½, a partisan map drawer could increase
party A seat fraction by decreasing vA, so the LO
measure, like the d measure, violates the principle
that a map drawer should not be able to change
the seat outcome without incurring a change in the
value given by the measure of bias.47 Although
this LO measure is similar to the d measure in the
sense that both of their ideal curves depend upon
vA, Figure 17 shows that they have different ideal
curves.48 The ideal S(V) curve obtained from the
LO measure is similar to the proportionality and
EG measures in that it is linear. Furthermore, its
ideal responsiveness in Eq. (5.4.2) is r = R = ½(vA

– ½); this relates to accommodating political geog-
raphy which would be expected to produce smaller
values of vA – ½ for more homogeneous states.
However, the actual value of LO is given by Eq.
(5.4.1) and that depends upon ½ – vB which is a
separate variable for states with LO s0.

5.5. Minimal inverse responsiveness z

We turn in this subsection from fairness to re-
sponsiveness because many reformers believe that
districts should be competitive and that requires a
statewide plan to be more responsive. Responsive-
ness makes it easier for voters to change the party
in power, and it provides for more robust elections.
It is therefore pertinent to consider maximal respon-
siveness as an ideal and to devise a measure of the
extent to which a map does not satisfy the ideal.
Such a formula has to take into account a maximum
ideal value rmax. Clearly the maximum occurs when
all the districts j have partisan preferences vj = 0.5.
Of course, this is only possible when the state-
wide vote is V = 0.5. If one uses all-or-nothing as-
signment of a district’s seat, then a small shift in
statewide vote flips all the districts; that means
rmax = N. Infinity is not a subtractable number
and that makes it awkward to quantify how a real
map differs from the most responsive. To accom-
modate this, we define an inverse responsiveness
measure z as:

f ¼ ð1=qÞ�ð1=qmaxÞ: ð5:5:1Þ

Ideal responsiveness is then indicated by z= 0,
and more responsive maps are identified as hav-
ing smaller values of z. With all-or-nothing district
seat assignment 1/rmax is simply zero. However,
when the vote swings by a small amount, it is
quite unlikely that all the fully competitive districts
will swing to the same party, so it is preferable to
use fractional seats, and from its slope we obtain
rmax = 10. We consider this value of rmax to be a
reasonable maximum responsiveness for balanced
states. This reduces z by 0.1 in Eq. (5.5.1) compared
to using the assignment of just 0 or 1 to a district’s
seat. For unbalanced states a derivation of rmax is
deferred to Supplementary Appendix E.

46The usual calculation for each party simply adds the excess
vote fractions just in those districts won the party and divides
by the number of those districts. We use fractional seats and
fractional excess votes for responsive districts, although differ-
ences are usually small.
47Similarly to the ideal d measure, party A could increase vA in
order to increase SA when VA < ½, Katz et al. (2020, 174) have
also published Eq. (5.4.2) and criticized the LO measure.
48This is also easily seen from Eq. (5.3.1) which is required for
d= 0 whereas LO = 0 requires the left-hand side of Eq. (5.3.1) to
be zero, and these two requirements differ except when VA = ½.
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6. COMPARISONS

Now that data have been shown and various mea-
sures have been described, we come to the most im-
portant part of this article in subsection 6.1 where
we synthesize our results to measure total partisan
bias in unbalanced states. Comparison of measures
that don’t work well is given in subsection 6.2,
and the durability of measures is shown in sec-
tion 6.3.

6.1. Best measures of partisan bias

in unbalanced states

Different measures of bias measure different
quantities. The aS, b, and g measures focus on
seat bias in the S(V) graph, the aV measure focuses
on vote bias, and GS measures a combination of the
two. Regarding the r(v) graphs, the LO measure fo-
cuses on packing districts, the declination d measure
is a geometric quantity that relates to both packing
and cracking, and like the aV measure, the more tra-
ditional median minus mean (mM) (McDonald and
Best 2015), focuses on vote bias. Questions natu-
rally arise: Which of these measures is best? And
is there any agreement among them? These ques-
tions cannot be answered by examining a single
map for a single state. In this subsection we show
that they can, however, be answered by comparing
the performance of measures across multiple states.49

The comparison is facilitated by normalizing the
values obtained by the measures to a common scale.
This gives the graphical comparison shown in Fig-
ure 18. In this figure the aS, d, g, and GS values
were each normalized to the aV values, so the mean-
ing of the scale in the vertical axis is the percentage
of the Democratic vote in excess of 50% for half the
seats.50 The average of these normalized measures
is shown by the stars. We call this composite bias
and assign it the symbol O. Values of O are given
in Table 1.

The normalized measures shown in Figure 18 are
visually well correlated as is confirmed by the r val-
ues in the legend.51 All the signs agree except for
the MA g outlier which has been omitted from the
statistics for the reasons given in section 5.2. We hy-
pothesize that the composite average O of these
measures provides a better estimate of bias than
any one of them. The t-test obtains the 99% confi-
dence ranges for O shown by the uncertainty bars
in Figure 18. These indicate substantial partisan

bias for Republicans in PA, NC, OH, SC, TN, and
TX. At the 95% confidence level (not shown in
Fig. 18), MD and CA are biased in favor of
Democrats and MA and IL are biased in favor of
Republicans.52

For each measure the legend in Figure 18 also
shows the average value over all states of its
standard deviation (SD) relative to the stars in Fig-
ure 18. This individual SD of each measure provides
an estimate of its uncertainty when it is applied
separately from the other measures. At the 95%
confidence level of two standard deviations, these
SD values would indicate bias for all five of these
measures in PA, NC, OH, SC, and TN and none
of them indicates bias in CO and CA. In MD only
the aV measure falls short of the 95% confidence
level. For the three states MA, IL, and TX, some

FIG. 18. Comparison of bias across states for five measures
normalized to the aV measure. Mean values are shown by
stars with 99% confidence ranges. The legend shows the values
for each measure of the Pearson r correlation and the standard
deviation relative to the state mean averaged over states.

49Although there have been many studies comparing states, we
are unaware of this particular application to assess measures of
partisan bias. We also note that one could also address these
questions by comparing many maps for the same state.
50The normalization factor for each measure was obtained by
regression of its values to the aV values. Standardizing disparate
measures to obtain an average has also been accomplished by
Stephanopoulos and Warshaw (2020).
51The pairwise comparisons of the five measures are also well
correlated.
52When comparing two plans for the same state, the uncertain-
ties are likely to be correlated for each measure which would
reduce the uncertainty for discriminating their relative bias
ranges.
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of the measures fall on either side of but usually
close to the 95% confidence level. These results
suggest that any one of these measures could often
be an adequate measure of bias whenever it is incon-
venient to calculate all of them. When all five can be
calculated, we suggest using the composite value O.
This combines the different indicators of bias that
are associated with each of the individual measures,
and it provides a way to obtain a statistical estimate
of uncertainty as shown in Figure 18.53

6.2. Measures that don’t work in unbalanced states

Measures that disagree numerically from the av-
erages shown in Figure 18 are shown in Figure 19.
The b value agrees well for balanced states with
the starred average because <V> is nearly the
50% that is used for the a measures. Figure 19
also shows values of b close to zero for unbalanced
states which simply reiterates the point made in
section 3.2 that there has to be a crossover point be-
tween the S(V) curves for D and R in the unbal-
anced range as indicated in Figure 15.

The PR values derived from proportionality (see
Supplementary Appendix C.1 for definition) in
Figure 19 also agree with the other measures for
balanced states, but they differ substantially in un-
balanced states which we attribute to political geog-
raphy. Such deviations would be smaller if accurate
estimates would be made of PRSMD in Eq. (C.2.1).
Of course, PR is very strongly correlated with the
winner’s bonus R in unbalanced states.54

The LO values shown in Figure 19 are consistent
with those of other measures in balanced states by
indicating much more bias in favor of Republicans
in NC, OH, and PA compared to CO. It has previ-
ously been noted (Wang et al. 2018, 313) that LO
is not suited for detecting bias in unbalanced states.
Indeed, the value of LO indicates a bias in favor of
Republicans in MD and an even larger Republican
bias in IL and CA. The Republican LO bias for
CA is easily seen from its r(v) graph in Figure 9.
Because CA has essentially symmetrical r(v) and
S(V) graphs, average packing is necessarily smaller
in the R won districts than in the D won districts.55

In TX, LO gives a bias in favor of Democrats. Both
these unlikely values suggest that LO contains a spu-
rious piece for unbalanced states which makes it re-
port too much bias in favor of the minority party.56

Values of z would not be expected to correlate
well with any of the other values because z is a mea-
sure of responsiveness, not of partisan bias.57 Sur-
prisingly, plans in the heavily biased balanced
states such as PA, NC, and OH have smaller, more
favorable values of z than unbalanced states. This
is due to their statewide Democratic vote occurring
for <VD> slightly greater than ½ where the S(V)
curve rapidly rises. Evaluating r at smaller <VD>
where the actual congressional votes occurred would
make z larger for these states. Even so, z would
not be correlated with measures of bias in the un-
balanced states.

6.3. Durability

It is desirable that the numerical values given by
a measure of bias do not change much for typical
maps when the vote swings by plausible percent-
ages around the best estimate for the statewide
average <V>. Many measures of bias change dra-
matically with small changes in the vote when all-
or-nothing assignment of a district’s seat is used

FIG. 19. Comparison across states for four measures and the
average from Fig. 18, normalized to the aV measure.

53Notice that these uncertainties are different than the generally
smaller statistical uncertainties in the five basic measures which
arise from the different statewide elections.
54In the Democratic majority states, the appropriate correlation
is between R values and negative PR values.
55This follows from the definition of LO with respect to the dif-
ference in separation of the outer open circles from the inner
open circle in the r(v) graphs.
56By comparison of Eq. (5.4.1) with Eq. (5.3.1), <VD> – ½
should be subtracted from LO.
57Bipartisan gerrymandering reduces responsiveness but does
not affect partisan fairness in balanced states.
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for states with a small number of districts. We will
call this instability. It does not reflect the true char-
acter of a plan or of a measure of bias. Instability
is appropriately avoided by calculating fractional
seats.

This subsection discusses a more fundamental
type of change which is often described as durabil-
ity (Grofman 2019; Wang et al. 2018) and as sensi-
tivity (Warrington 2019). We define a measure to be
absolutely durable if there is no change in the bias
as the vote swings.58 An example of an absolutely
durable measure of bias is the aS measure. Although
aS is evaluated at V = ½, that evaluation is performed
on the S(V) curve which doesn’t change after it is
drawn for a map using many past elections.59 Like-
wise, the aV and GS measures do not depend on
choosing a statewide vote. Durability has also been
a strong argument in favor of the median minus
mean (mM) measure which uses the r(v) graph.60

Other measures of bias are not absolutely dura-
ble. Non-durability of the d, PR, EG, z, LO, and g
measures is examined for NC in Figure 20 and for
TN in Figure 21. These two figures illustrate that
none of these measures is absolutely durable for
all states.61 While the LO measure is most durable
for NC, it is least durable for TN. The PR and g
measures are most durable for TN, but PR is least
durable for NC while Figure 14 shows durability
concerns for g in MA. The d measure is fairly du-
rable for TN, although it varies more for NC. Of
course, one way to superficially make these mea-

sures durable would be to average over a range
of V centered on <V>. However, such averaging
tends to bring the value of bias back to what is
obtained just using the central value obtained at
<V>, so the intrinsic non-durability remains. This
argues in favor of using the durable measures of
bias mentioned in the previous paragraph. The z
measure of the departure from ideal responsiveness
defined by Eq. (5.5.1) is not constant in Figures 20
and 21, simply because the S(V) curves are not lin-
ear. For CA, which has nearly linear S(V) and r(v)
graphs, the g, z, and d measures are quite durable.
The O measure is the most durable measure in
Figures 20 and 21.

FIG. 20. Non-durability of five measures of partisan bias and
the z measure of responsiveness applied to the 2011 enacted
map for NC, normalized to 1 at V = <V>. Actual values at
<V> are shown in Table 1.

FIG. 21. Non-durability of five measures of partisan bias and
the z measure of responsiveness applied to the 2011 enacted
map for TN, normalized to 1 at V = <V>except for the LO mea-
sure (see FN 62). Actual values at <V> are shown in Table 1.

58This definition neglects systematic temporal variation differ-
entially by precinct and district. Although the used data do not
allow us to address precinct level changes, differential temporal
variation of districts is contraindicated by the relative stability
of their rankings over different elections.
59The S(V) curves we calculate are quite insensitive to large
variations in V as seen by the small uncertainties in our S(V)
figures.
60The mM measure is durable insofar as the median district vote
swings equally with the statewide vote when the uniform shift is
employed, and that is only marginally changed when propor-
tional shift is employed for typical swings. The mM values
do depend delicately on a single median district compared to
the conceptually similar aV measure, so we include only the lat-
ter in our set of core measures.
61The numerical values of the different measures are quite dif-
ferent which leads us to normalize all the values to unity at
V = <V>. An exception is made for LO in TN because its
value is nearly zero at <V>; the graph shows 1 + 10LO, which
emphasizes that LO changes sign in this range of V.
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7. DISCUSSION

We preface this discussion by reminding the
reader that our measures of bias are for total parti-
san bias, whatever its provenance. Overtly intended
gerrymandering is just one part. Another part is un-
remediated bias due to a state’s political geography
and its map-drawing rules.

7.1. Balanced states

Although the primary focus of this article is on
unbalanced states that lean strongly towards one
party, it is important to emphasize that the thorny
issues that arise for such states do not much affect
balanced states. It does not matter whether one pre-
fers proportionality (PR) or the efficiency gap (EG)
(McGhee 2014) or the cubic law (Kendall and Stuart
1950) or bilogits (King 1989); when the vote share
is close to 50%, they all converge on the unassail-
able criterion of 50% seat share for 50% vote share.
While vote share is never precisely 50%, we have
shown that many measures of bias agree rather
well with each other for the 2011 plans of the four
nearly balanced states CO, PA, NC, and OH.

Figure 18 shows this agreement for the seats-
based measure aS, the votes-based measure aV, the
geometric declination measure d, a global sym-
metry measure GS, and a new responsiveness &
seats-based measure g. Figure 19 extends this
agreement to the LO packing measure, the propor-
tionality measure PR, and the extended symmetry
measure b.62 This agreement is revealed in these
figures by normalizing the values obtained in
Table 1. Different measures provide values for dif-
ferent quantities, such as angles for the d measure,
seats for the aS measure, and votes for the aV mea-
sure. These quantities provide different perspectives
on the underlying bias. These quantities naturally
have different scales, nearly 60 degrees for d and
only 5% for aV. Normalization provides a common
scale that allows one more easily to compare differ-
ent measures.

The agreement in this article of many measures
of bias for balanced states confirms the unsurprising
conclusion that the enacted 2011 plans in NC, OH,
and PA are highly biased in favor of Republicans.
The same analysis also reveals that the CO plan is
quite fair. All this reassures map drawers that mea-
suring bias in balanced states is quite achievable
with a wide range of measures.

7.2. Measures of bias for unbalanced states

The preceding fine agreement of the normalized
values obtained for all measures of bias when ap-
plied to balanced states only holds for some of
those measures when applied to unbalanced states.
Figure 18 in section 6.1 shows agreement for the
seats-based measure aS, the votes-based measure
aV, the geometric declination measure d, a global
symmetry measure GS, and a new measure g that
uses both seats and responsiveness at the average
vote <V>. We will call these the core measures
and we propose that any one of these could be
used to measure bias in unbalanced states.63 This
is a key finding in this article.

While the aS, aV, GS, and g measures all use the
S(V) curves that shift the primary r(v) data and em-
ploy fractional seats, the d measure relies only on
the primary r(v) data.64 The d measure ideal is sub-
ject to manipulation as shown by Figure 17, but it is
best at quantifying walls of safe, but not packed,
districts favoring one party that are visually appar-
ent in the r(v) graphs. As shown in Figures 20 and
21 in section 6.3, values of bias obtained from the
d and g measure depend upon the average vote
<V>, so they are free of the vote shifting counterfac-
tual. However, they are not as durable as the other
three S(V) based measures. The aS and the aV val-
ues are absolutely durable but only because they are
evaluated near the center of the S(V) curve, which is
displaced from the statewide vote for unbalanced
states. However, the S(V) curves for unbalanced
states like SC, TN, and TX that have strongly biased
values of aS and aV have quite similar shape to
those of NC, OH, and PA whose values of aS and
aV clearly show bias according to the fundamental
principle that half the seats should be obtained for
half the vote. The aS and g measures give a relatable
quantity, seat bias, and the aV measure gives vote
bias, whereas the d and GS quantities are more ab-
stract. The normative principle for the aS, aV, and g

62One can add the efficiency gap measure EG to this list as its
bias values are very near the same as the proportionality PR val-
ues for these balanced states.
63It is, of course, logically possible that all five measures could
be mutually wrong, but this appears unlikely in view of overall
agreement of the results with a priori intuition.
64Nagle (2019) has criticized the d measure for being unstable,
but our use of fractional seats makes it stable. Warrington
(2019) has instead proposed adding fictitious buffer districts
to achieve stability.
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measures is the fundamental half the seats for half
the vote, whereas the normative principal for the d
and GS measures is symmetry. GS measures abso-
lute asymmetry over the whole range of the S(V)
curve, but which party is biased against requires ap-
pealing to one of the other measures. Clearly, none
of these five measures is the silver bullet for evalu-
ating bias in unbalanced states.

A natural question is: Why do these measures
generally agree with each other? We suggest that
each, in its own way and albeit imperfectly, is
getting at the core underlying bias in a plan. We pro-
pose that together, like buckshot, they are sufficient
for the job at hand, namely, to show that measuring
bias is not limited to balanced states. This then leads
us to consider a suitably normalized average, the
composite measure O, which we suggest is better
than any of the individual measures from which it
is composed because it incorporates the various
strengths of those measures.65

7.3. Two rejected measures of bias

for unbalanced states

The b measure of bias is based on a symmetry
principle that seems so plausible that it came as a
surprise that it does not work in states with a dom-
inant party. Figure 19 shows that b has small values
for all the unbalanced states. In section 3.2 we show
how and why this occurs based on examination of
the r(v) graphs. Those graphs are highly asymmetric
as seen by their values of d, but they lead to S(V)
curves that are necessarily rather symmetric, but
only near the value <V> for unbalanced states. For
other values of V, especially those for which values
of aS, aV and GS are obtained, the S(V) curves are
highly asymmetric. That is why these are better
measures of bias than b. Withdrawing confidence
in the b measure does not repudiate the concept
that symmetry between parties is still an ideal. It
simply means that a broader notion of symmetry
is required. Supplementary Appendix D defines dis-
trict symmetry (DS) in the r(v) graph, and the GS
measure uses global deviation from symmetry in
the S(V) graph. Of course, the d measure directly il-
lustrates deviations from symmetry in the r(v) data.
The aS and aV measures zoom in on the central
portion of the S(V) curve where asymmetry is ro-
bustly apparent. The g measure only uses the sym-
metry principle at the 50/50 point along with
counterfactual-free data.

The LO motivation of focusing on packing looks
attractive a priori. However, values of LO bias in
Figure 19 would claim that CA and IL are strongly
biased in favor of Republicans while TN is fair and
TX is biased in favor of Democrats, disagreeing
strongly with our core measures and common per-
ceptions. Section 5.4 argues that this indicates a sys-
tematic artifact that assigns too much bias in favor
of the minority party in unbalanced states.

7.4. Proportional ideal

In Supplementary Appendix C.1 an argument is
reiterated that proportionality is the ideal fair repre-
sentation for partisan groups of voters and that the
PR measure defined as S – V is the appropriate mea-
sure of bias. But then in Supplementary Appendix
C.2 the well-known incompatibility of proportional-
ity and the single member district system due to par-
tisan geography is reiterated. In particular, MA is
an example of a state where relative geographic uni-
formity of partisan voters makes it essentially im-
possible to draw congressional districts that would
durably give Republicans a proportional share.

A redistricting procedure based on the propor-
tionality ideal would be to find plans that come clos-
est to satisfying proportionality for the most likely
vote share <V>.66 As emphasized by the example
of PA (Nagle 2019), a serious drawback is a state
imposing constraints on the set of acceptable plans
that makes it impossible to achieve a fair map. Fur-
thermore, the ensuing PRP estimate of bias defined
in Supplementary Appendix C.2 can’t be obtained
just from a plan itself but requires drawing many
other possible maps. That is impracticable and cer-
tainly limits the number of people who could eval-
uate maps they have drawn.

Of course, researchers are now capable of gener-
ating ensembles of many maps by using various
computer simulation techniques. As described in
the introduction, often that is done to establish

65The estimates of uncertainty shown in Figure 18 may also be
thought of as providing an estimate of the degree of imperfec-
tion inherent in each measure relative to the underlying bias that
we estimate by O.
66Since there would be other maps that would grant the majority
party a larger winner’s bonus R, we are aware that it may be
deemed naı̈ve even to suggest such a criterion. However, a cri-
terion that would guarantee minority party seats, by packing
minority party voters if necessary, has recently been favorably
discussed by Katz et al. (2020, Appendix B).
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benchmarks or baselines that give average values of
bias and then measuring intentional bias as differ-
ences from the baseline average. This has been
used for court cases to evaluate intentional
gerrymandering, but that is not what PRp in Supple-
mentary Appendix C.2 attempts to measure. It mea-
sures bias as the difference from the plan that comes
closest to proportionality, and that putatively fairest
plan may even be an extreme outlier in the set of
computer generated plans when a state’s political
geography favors one party.67 This is consistent
with the quote at the end of section 4.1 from McDo-
nald et al. (2018, 323) to the effect that the Illinois
legislature drew an outlier map in 2011 that turned
out to be rather fair. The challenge with implement-
ing this approach is in determining what is the fair-
est possible plan with respect to proportionality. For
that reason, in the body of this article we have
retreated to our five core measures aS, aV, d, g,
and GS and their composite O that appear to mea-
sure total bias reliably without this complication
and the related complication of having to consider
political geography and its interaction with the
state’s rules for map drawing.

7.5. Responsiveness

We have considered several quantities related
to responsiveness. The basic one is r; it measures
how responsive the plan is at the expected value
of the statewide preference <V>. Bipartisan gerry-
manders that lock in safe seats for either party
have small values of r, so it is an important measure
for reformers. It is most easily measured from the
S(V) curve. Table 1 shows values of r that are sus-
piciously small for MD, SC, TN, and TX. We have
also defined a reciprocal responsiveness measure z
in section 5.5 that allows comparison of a plan to
a realistic maximum responsiveness that takes into
account the difference between unbalanced and bal-
anced states. This responsiveness measure is not
well correlated with bias, reaffirming that fairness
and responsiveness are two separate quantities (King
and Browning 1987). We suggest that z = 0 defines
an appropriate ideal responsiveness.

An overall responsiveness R, by taking on a
negative value, identifies an anti-majoritarian out-
come in balanced states, and it assesses the winner’s
bonus in unbalanced states. In the latter case a large
value of R is associated with unfairness to the mi-
nority party as in MA, MD, SC, and TN, but it likely

has a minimum value that depends on the political
geography of a state. This measure of responsive-
ness is therefore entangled with bias in both bal-
anced and unbalanced states.

The ratio r/R is also of interest; a ratio near 1 in
unbalanced states, such as CA and IL, follows from
their linear district symmetry (DS) as seen in Sup-
plementary Appendix D. Bipartisan gerrymander-
ing in unbalanced states reduces r/R by reducing r.
This ratio is also small in balanced states that are
biased because R is generally large and even neg-
ative for anti-majoritarian states like PA, NC, and
OH.

Another measure of responsiveness that we have
not focused on is the fraction of competitive dis-
tricts. A rough way to estimate this is to multiply
r by a competitive range of votes, typically 10%.68

It is somewhat discouraging that this means that
there would only be 20% competitive districts even
with r = 2 super proportional responsiveness. In
any case, the S(V) curve is the most appropriate
vehicle to assess responsiveness/competitiveness.

7.6. Future application to redistricting

In order to focus on the thorny issue of measuring
bias in unbalanced states, this article has performed
an analysis across states using the single 2011 plan
for each state. Moving forward to redistricting in
2021, we propose using five core measures in all
states for the purpose of comparing the bias in dif-
ferent proposed plans. Although any one of these
measures would provide an estimate of the total
bias, a better estimate would average their normal-
ized values as in our composite O measure. The nor-
malization factors we obtain from our analysis
across states are, for normalization to the aV mea-
sure, 0.21 for aS, 0.083 for d, 0.66 for GS, and
0.17 for g. These would provide a first approxima-
tion for new maps in a state. However, it is quite
likely that these normalization factors will be differ-
ent for different states. For example, 12 maps were
analyzed for aS and aV using the same 7s election
data in Table 1 in Nagle (2019, 69). Regression on

67Cf. the introduction and footnote 3. Also, note that this sec-
tion applies equally to other measures like the efficiency gap
that has an ideal S(V) curve.
68Better than a fixed range with a sharp cutoff would be a grad-
ual fractional district measure. While competitiveness at the
statewide level and responsiveness have distinct measures,
they are clearly closely related.
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these data gives 0.31 for the normalization of aS to
aV, rather larger than the above value of 0.21. There-
fore, as more maps are drawn, more precise values
of the normalization factors can be obtained.69 The
main result of this article remains the identification
of the core measures of bias for all states and the
analysis that devises a composite measure O.

8. CONCLUSION

Based on the results in this article, we propose
that total partisan bias can be measured reliably
for the problematic unbalanced states as well as
for balanced states. Any or all of the five core mea-
sures or their composite U measure can be used with
past election results to assess partisan bias in maps
drawn by redistricting commissions, in maps drawn
by individuals using various map drawing software,
and in maps drawn by computer algorithms. Further-
more, responsiveness can also be obtained immedi-
ately from S(V) graphs. Measures of fairness and
responsiveness that are perceived to be reliable
would encourage the enactment of election law
that would include these fundamental concepts,
and in a form that could have justiciable bite.

SUPPLEMENTARY MATERIALS

Supplementary Appendix A
Supplementary Appendix B
Supplementary Appendix C
Supplementary Appendix D
Supplementary Appendix E
Supplementary Appendix F
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On measuring two-party partisan bias in unbalanced states 
John F Nagle and Alec Ramsay 

Supplementary Appendix A:  Data  

A.1  Source. 

The data come from statewide election returns compiled and disaggregated to voter 
tabulation districts (VTDs) by Stephen Wolf at Daily Kos (Wolf 2014).  Since U.S. elections at 
all levels are administered by county or local governments, Wolf disaggregated county level 
returns to assign votes to VTDs.  While this is not ideal, first order discrepancies were avoided 
by using available votes cast in the VTD in the 2008 presidential election and the proportion of 
the county’s population living in a VTD.  McDonald, et al. 2018 have reported that Wolf’s 
disaggregation method was sufficiently accurate by comparison to VTD level data that were 
available in several states.  Even if Wolf’s data were deemed unsuitable to determine bias for the 
actual states in question, these data are sufficient to test measures of bias as this can be done for 
any consistent set of data.   

 

 

 

 

 

 

 

 

 

 

Table A.1  Used statewide elections for each state as well as a downballot composite for each 
state.   

The states that were used are given in Table A.1  Our initial choice of states to analyze was to 
follow McDonald, et al. 2018 who chose the four states, IL, MA, MD, all unbalanced D states, 
along with balanced OH.  We then wanted to have a comparable number of unbalanced R states, 
choosing TX as the largest one to match CA which we thought would be valuable as the widely 
touted most fairly districted state, as well as two smaller unbalanced R states, TN and SC, to 
match MA and MD.  We also added notoriously biased balanced states PA and NC as well as 
CO which looked a priori to be the least biased balanced state. The used elections and results are 
in the research/elections directory of this GitHub repository:redacted for review.  Elections that 
had significant third-party votes were not used.   
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A.2.  Calculations for r(v) and S(V) graphs 
For each congressional district j in each election we calculated the two-party Democratic 

vote fraction vj = D vote / (D vote plus R vote).  For each district, the average vote fraction and 
the standard error of the mean was calculated and plotted in the r(v) graphs.  The statewide two-
party vote fraction in each election was calculated in two ways: 1) the average of the district vote 
fractions and 2) the actual two-party vote fractions in the state.  The difference of 1) minus 2) is 
the turnout bias (McDonald 2009).  Table A.2 shows values for the CA elections that we used.  
Table A.3 shows average values of turnout bias for all analyzed states. 

 
    
  
 
Table A.2  Average statewide vote <V> and turnout bias for CA elections 
 

 
 
 
     
Table A.3  Average turnout bias for all states.  
 

Because turnout bias is small, it has been ignored in the main text where the tables and figures 
show the actual two-party vote fractions.  

For each election ε a seats/vote Sε(V) graph was calculated for statewide vote Vk from 25% 
to 75% in intervals of 0.5%.  For each Vk a voter preference vj(Vk) was calculated for each 
district j using a proportional shift from the factual vj(<V>) as defined by Nagle 2015, 2019.  
When the shifted statewide party preference Vk for party A is smaller than <V>, party A voters 
in each district are shifted to party B.  The proportional shift shifts the same fraction of party A 
voters in each district.  In contrast, the uniform shift shifts the same fraction of total voters from 
party A to party B regardless of how few party A voters there may be.1  The fraction of a seat 
estimated for each shifted district was then calculated using party seat probability P(V) = 1 – ½(1 
+ prob((V – ½)/0.04)) where prob is the usual probit function, here with variance 0.04.2  The 
sum of seat fractions over all districts was then Sε(V) for that election.  Figure A.1 shows Sε(V) 
curves for several elections in CA.  Then, the S(V) curve is the average of the Sε(V) curves and 
the error bars in the S(V) graphs are the standard error of the means at each V.  Finally, solid 
circles in the S(V) figures show Sε(Vε) where, for each statewide election ε,Vε is the statewide 
vote and Sε is the average sum of district fractional seats.  Differences between the individual 
Sε(Vε) and S(Vε) are another measure of the uncertainty of our estimates.   

 
 
 
 

 
1 The uniform shift can obviously result in districts with less than 0% or greater than 100% preferences, 

but that can’t happen with the proportional shift. 
2 For example, this function estimates that a district with 55% preference for party A has a seat likelihood 

of 10.5% for party B as shown in Fig. 1 in Nagle 2019.  
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Fig. A.1  Solid circles show 

seats Sε(Vε) for nine CA 
elections ε from whose 
district votes are obtained the 
shifted Democratic Sε(V) 
curves. Averaging gives the 
mean S(V) curve shown with 
standard deviations. 

 
 

 
 
 
 
 
A.3.  Supporting information for use of fractional seats.  (Material in this subsection has been 
added after publication.) 

Fig. 1 is here redrawn with the same P(V) as in the paper with σ = 0.04.  Fig. 1 also shows its 
derivative p(v) = (dP(v)/dv)/N where N was chosen to normalize p(0.5) = 1.   This p(v) 
derivative is the underlying Gaussian exp(-(v- ½)2/2σ2) that is the basis of the normal 
distribution and the probit function and much of the field of statistics.   
 
Fig. 1.  This is 
what is assumed in 
the paper. 
 
 
 
 
 
 
 
 
 
 

This Gaussian is the probability p(v) that the vote in an election be v votes if the mean value 
V equals ½. In words, p(v) shows the probability of a swing v – ½ in an election.  When the 
mean vote is 0.5, then the magenta curve shows the probability for swings in the actual vote.  
Since the sum of the probabilities for v exceeding 0.5 is also 50%, this means that the probability 
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of party A winning is 0.5 and this provides the ( ½ , ½ ) point on the blue probability curve.  For 
any other average vote vnA on the blue horizontal axis, the magenta curve is shifted to v = vnA 
and the sum of all probabilities exceeding ½ is calculated to provide the probability that party A 
wins the district.   

There are two main assumptions here.  The first is choosing the probability distribution 
function to be a Gaussian.  The classic argument for this is that Gaussian probability is what 
ensues from lots of random causes that can’t be predicted and that are uncorrelated with each 
other. This is the standard assumption in statistics and probability since Gauss 200 years ago.  
However, it is always possible that the distribution follows a different distribution.  For example, 
given an average partisan preference, a district might swing further towards one party less than 
half the time, but the swing would be larger on average; this is skewness in the distribution of 
swings.  Another example is that the swings are large in both directions with few near zero 
swings; this is kurtosis in the distribution.   

Of the many standard statistical tests for rejecting Gaussian normality, the Shapiro-Wilk p-
test was applied using Origin software to the 194 districts in the 11 states in this paper using all 
the elections in Appendix A.  It was found that 25 districts were rejected for normality at the 
usual 5% level.  However, a single outlier election can cause districts to be rejected; this was 
most obvious in TN where the swing for 2006 Governor was 28% above the mean.  Omitting this 
election reduced the number of TN rejected districts from 2 to 0.  The p-test also identified this 
election as an outlier when it was applied to all the statewide elections.  This second use of the p-
test was then employed in other states and the 2010 Attorney General election in CA and the 
2010 Senate election in SC were also found to be outliers.  Removing these elections reduced the 
number of rejected districts to 5 in CA, 1 in NC and 2 in TX for a total of 8 districts (4.1%) 
rejected for normality.  Of course, 5% of random draws from a Gaussian distribution should be 
rejected for normality at the 5% level, so the assumption of normality is empirically supported.   

The second assumption is the numerical value of the width σ = 0.04 of the Gaussian 
distribution.  Of course, σ is not expected to be the same for each district or for each state.  We 
can estimate σ from the second moment of the empirical distribution of the swings.3  The 
resulting average district σ for each state is shown in the next figure.  
 
Fig. 2.  Empirical values of 
average district σ by state.  
Average over all states is σ = 
0.055±0.017.  Average 
weighted by number of 
districts is σ = 0.051±0.010.  
 
 
 
 

 
3 This is just the square root of the average squared mean deviation from the average vote. 
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Choosing different values of σ makes a significant difference in obtaining a fractional seat 
value for one district.  However, when we obtain the sum of fractional seats of a party in a state, 
the differences in the sum is smaller because there will usually be districts leaning in both 
directions, although not the same number which is one reason why fractional seats should be 
calculated.4  Of course, DRA could be programmed to compute σ for each state and even for 
each district, although the accuracy will generally be poorer than what is shown in Fig. 2 because 
there are generally fewer elections in the DRA database than the 9 to 16 in Table A.1.5  

In summary, using σ = 0 is all-or-nothing which unrealistically assumes that a district that 
slightly leans to a party by 1% is as likely to be won by that party as a district that favors that 
party by 10%.6  We assert that the use of σ = 0 is an assumption, and a much worse assumption 
than assuming normal statistics with a value of σ that is consistent with the literature and 
strongly supported by data.7 

 
Supplementary Appendix B:  Comparison of proportional and uniform 
methods for shifting vote share 

It has long been recognized that reliable extrapolations can be made by shifting the vote that 
is obtained in actual elections.  The simplest way to do this, much used over the years, is the 
uniform shift method which shifts every precinct and every district by the same percentage as the 
shift V - <V> in the statewide vote.  While this time-honored method is likely to be reliable for 
competitive districts j with vj close to 0.5, it has the obvious flaw for unbalanced districts that vj 
may become greater than 1 or less than 0 (King 1989), so we employ the proportional shift 
method.  This is based on the more plausible model that it is equally likely that any voter 
anywhere in the state is equally likely to shift his/her vote in the same proportion as the statewide 
shift.  Of course, this is a model.  It is quite likely that some precincts have such strong partisan 
preferences that hardly anyone will vote differently when the statewide vote changes and other 
precincts will be more responsive than average.  We have done a cursory analysis that suggests 
that such differences tend to average out at the level of congressional districts when many 
elections are considered, but that is beyond the scope of this paper.  The purpose of this appendix 
is simply to show how the S(V) curves compare for the two different models.8 

 
4 In the past results have been compared using σ = 0.02 with those from using σ = 0.04 with acceptable 

differences.   
5 A suitable compromise for DRA would be to calculate σ from the statewide elections.  That σ has negligibly 

smaller values than those shown in Fig.2.   

6 It might be noted that using a very large value of σ gives P(V) = ½ for all V, which unrealistically says 
that partisan preference makes no difference in future elections.   

7 A criticism of our use of normality tests is that they tend to be more accurate with more than 30 data 
points, but we only have, depending upon the state, between 9 and 16 elections.  A superficially 
appealing alternative to exceed 30 data points would combine the swings of all districts in a state. 
However, such a data combination should not be used to test district normality because there is strong 
correlation in the district swings for each statewide election; analyzing such a data set for normality 
would require a more complicated analysis with a reduced effective number of independent data points.   

8 Katz, et al. 2020,172 have recently noted that the proportional swing has three times the error of uniform 
swing in their data base.  The errors are smaller and more nearly equal for the two methods in our 
analysis. We also note that their paper used alternative (1) in Sec. A.2 for the vote fraction. 
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Figure B.1 shows the comparison for PA.  As expected, both methods agree with each other 
and with the actual election results in the actual vote range.  The difference for large shifts is also 
expected.  The uniformly shifted S(V) only goes to 0 when the statewide shift away from 
Democrats is large enough to shift the most Democratic districts to become safe Republican (this 
also shifts some Republican districts to have more than 100% Republican voters).  In contrast, as 
the statewide vote shifts against Democrats using a proportional shift, the most Democratic 
districts lose Democratic voters more rapidly, so the Democratic proportional shift S(V) curve 
lies below the uniformly shifted S(V) curve for small V.  Similarly, as the vote shifts toward 
Democrats it takes a larger statewide shift for the most Republican districts to become 
Democratic, so the uniform shift S(V) lies below the proportional shift S(V) for large V. 

Fig. B.2 for CA shows the same differences between the uniform shift and the proportional 
shift as Fig. B.1.  Fig. B.2 also shows β(V) where 0.5 has been added to β in order to centralize 
the curves on the same figure.  The proportionally shifted β(V) reverses sign as V increases from 
0.5 where it is equal to αS and slightly favors Democrats to <V>=0.6 where it would indicate 
bias in favor of Republicans, contrary to all our core measures in Section 7 as shown in Table 1 
in the main text. The uniformly shifted β(V) follows the same course with V but its magnitude is 
much smaller at <V> than the proportional shift because S(V) is larger at the counterfactual V = 
1 - <V>.  For other states the sign is even different as shown in Table B.1.  Such large 
differences in the results using two plausible models for shifting votes is further reason not to 
trust the β measure of bias. The αS measure is clearly better as Table B.1 shows that its values 
have the same sign in each state for both shifting methods, although the magnitudes do differ, 
most in TX where votes in the actual elections require the greatest extrapolation to V = 50%. 

 

 

 

 

 

 

 

 

 

                                                                     

Fig. B.1  S(V) for two shift models in PA                     Fig. B.2.  S(V) for two shift models in CA 

 

Table B.1.  Percentage values 
for α and β for unbalanced 
states as determined using 
proportional shift and 
uniform shift.   
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Appendix C:   Proportionality vs. Political Geography and the SMD System   
C.1  The proportionality ideal 

Proportionality is widely recognized as the ideal in countries that use a list or mixed member 
proportional system to determine the fraction of seats awarded to different parties, but courts 
have not recognized it in the United States.  Indeed, SCOTUS opinions have specifically denied 
that proportionality has constitutional support. A more cogent argument against proportionality is 
that it is not generally achievable over a wide range of the vote in the SMD system.  A 
counterargument is that proportionality only has to be achievable over the expected range of the 
vote in each state.  We will come back to achievability in the next subsection.    

Let us we review why proportionality can be considered the ideal, even in an SMD system.  
We begin with the assertion that each voter should be represented equally as any other voter.  
Two voters of like mind in the same district with the same representative clearly have equal 
representation, but that is different from the representation of a voter of opposite mind in the 
same district. That is an unfortunate feature of the SMD system of representation. Nevertheless, 
groups of voters of like mind can still be represented equally on average in the SMD system and 
that is how one can argue for proportionality as the ideal.9  In this view representatives are 
shared among voters, so the empowerment of each voter of like-mind is the number of 
representatives of the like-minded party divided by the number of voters who voted for that 
party.  Let us designate S and V as the fraction of seats and voters for party A and 1-S and 1-V as 
the fractions for the other party B.  Then, the share of representation per voter of the two parties 
is just S/V and (1-S)/(1-V) respectively.  Requiring equal shares for voters in both groups and 
trivial algebra then requires S = V, which is just proportionality.10   In terms of measures of 
responsiveness, this is R = ρ = 1. 

If proportionality is the democratic ideal, that suggests a simple measure of bias, namely,   

   PR = S(<V>) - <V>  .                             (C.1.1) 
This evaluation is only performed at the average vote share <V> in an attempt to avoid the 
achievability problem of demanding proportionality over a wide V range. The PR values for the 
states we have analyzed are shown in Table 111.  

The PR measure is related to overall responsiveness R by 

  PR = (R -1)(<V> - ½) ,  (C.1.2) 

 
9 Brief Amici Curiae of Common Cause and the Campaign Legal Center, Inc, Shapiro v. McManus,14-

990 (U.S. Aug. 13, 2015). 
10 Note that one can also generalize this in two ways.  First, even representatives of the opposite party 

provide representation for a voter of the opposite party, just not as much; although the algebra is more 
complicated, proportionality again ensues.  Second, one can derive proportionality for any number of 
parties.   

11 Regarding the sign of PR, when Republican values are inserted for S and <V> as is done in Table 1, 
then positive values of PR mean bias in favor of Republicans.   
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which shows that PR depends both on the winner’s bonus R and the state imbalance <V> - ½.12 

Another theoretical ideal is provided by the efficiency gap (EG) principle that the wasted 
votes should be equal for both parties.   This results in R = ρ = 2.  Other variations have also 
been discussed (Nagle 2017).  Historical averages give values of R near 2. This has suggested 
that idealizing an R =2 might take into account the effect of the SMD system. Then one has the 
well-known EG measure of bias (McGhee 2014),13  

EG = (S(<V>) - ½) - 2(<V> - ½)  .                             (C.1.3) 
Like the PR measure, EG also depends upon R and <V> - ½ according to EG = (R -2)(<V> - ½). 

C.2  Political geography and a modified proportionality measure 

The end of Section 4.2 essentially asks a question: Why should MD be generally 
acknowledged to have been gerrymandered whereas MA is not so considered when the estimated 
4% fraction of Republican seats in MA is so much smaller than the 14.3% fraction in MD for the 
nearly identical 60% partisan imbalance in both states?  This question can be reframed in terms 
of the quantitative measures in the previous subsection.  Why should the MD plan not be 
considered fairer than the MA plan when MD has smaller PR bias14 than MA if the value PR = 0 
is to be considered the ideal based on proportionality?  One answer could be simply that PR may 
not be a good measure of bias.   We next consider a more nuanced answer to this question that 
takes into account the contribution of political geography in the SMD system to the PR measure. 

If the political complexion of an unbalanced state is homogeneous, then any map must lead 
to the dominant party winning all the seats.  We believe that this is close to being the case for 
MA because we have been unable to draw even one reasonable looking Republican leaning 
district in MA.15  In contrast, the 2011 MD plan clearly showed that it was possible to draw a 
map with a strongly Republican district.  While the MD plan is fairer to its minority party voters 
by conforming better to proportionality than MA, one clearly can’t blame the makers of the MA 
plan for an unfair map if it was absurd to draw even one Republican district.  In the case of MA, 
we suggest that its large value of PR bias can mostly be attributed to its relatively homogeneous 
political geography interacting with the SMD system.  

In other unbalanced states it is certainly possible to draw some districts that are favorable to 
the minority party, but it still may not be possible to achieve PR = 0 due to their political 
geography.  In that case, the fairest achievable plan would be the one that minimizes the absolute 

 
12 Eq. (C.1.2) emphasizes how PR varies with R for a state’s relative vote share. However, the factor (<V> 

- ½) is crucial when considering balanced states as its small value drives R into negative, anti-
majoritarian values when the state is biased as seen for NC, OH, and PA in Table 1.    

13 Although the EG was originally expressed in terms of wasted votes, this form is equivalent when 
turnout bias is zero, and this is the form that properly accommodates turnout bias Cover 2018, McGhee 
2017, Katz, et al. 2020.  

14 MD also has smaller γ2 bias. 
15 Duchin, et al. 2019 have shown rigorously that it is impossible to draw any district that would have 

elected a Republican based on 5 statewide elections in the 2002-2010 cycle.  They also reported that 
MA has become more heterogeneous, and we have used the districtr software program to draw a 
contiguous, although not ‘reasonable looking’, district that had substantial Republican preference in all 
of the 8 statewide election results after 2008.  
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value of PR given the political geography of the state.  We suggest that the value of PR that is 
closest to zero be called PRSMD because it is a bias due, not to intentional gerrymandering, but to 
the incompatibility of the SMD system with proportionality. For maps that do not achieve the 
PRSMD value, that value could then be subtracted to obtain an effective plan bias 

 PRP = PR - PRSMD.       (C.2.1)                                                                                    
PRP can then be compared for plans within each state and also to compare plans enacted by 
different states.   

Let us illustrate how this proposal works for MA.  For MA, Table 1 shows PR = - 36% which 
is implausibly even larger than the Republican PR advantage in balanced, clearly biased states 
NC, PA and OH.  Let us consider as a rough estimate made from drawing a few maps and 
informed by the results of Duchin, et al. 2019 that about one durable and acceptable looking 
Republican majority district can be drawn in MA.  If so, then the maximum fraction of 
Republican seats at VR = 40% is 1/9 and PRSMD = (1/9) – 0.40 = -29%.  Then, the modified bias 
is PRP = -36% - (-29%) = - 7%.  This is considerably smaller in magnitude and more realistic 
looking than the unmodified PR = - 36%.  

This MA example indicates that the absolute values of PR for other unbalanced states in 
Table C.1 may also be too large and require similar modification to take account of political 
geography. Consistency then suggests that a similar modification should also apply to balanced 
states, so we turn next to PA where we uncover cautionary concerns.  Substantial numbers of 
maps for PA were drawn for the recent court case which overturned the 2011 Congressional 
map.  Those maps were drawn under the tight constraint that the number of county splits was to 
be minimized.16  Under those constraints, Nagle 2019 estimated that the maximum number of 
Democratic seats would be 7.5 for 50% Democratic two-party vote .17  One might then suggest 
that PRSMD = (18-7.5)/18 – 0.5 = 8% using 50% vote.  The problem with accepting this in Eq. 
(C.2.1) is that any PA plan with 58% R seats for 50% vote would be assigned zero bias (PRp = 
PR - PRSMD = 0) while strongly violating the most fundamental fairness criterion of 50% seats 
for 50% vote. The root cause for not being able to draw a fair PA map with more than 7.5 seats 
for 50% vote is simply the tight county split constraint imposed by the PA Supreme Court on 
acceptable maps.  It was shown that loosening the county split criterion allowed a fair map to be 
drawn (Nagle 2019).  That having been done, then the minimum absolute value of PRSMD is 0 
and only PA plans that satisfy the fundamental 50/50 fairness criterion have PRp = 0.  While this 
shows that consistency can be established in PA in the context of this PRp modified measure, it 
emphasizes the importance of the constraints imposed on acceptable maps and concern over how 
that choice is made. 

 
16 PA practice requires population deviation not to exceed one person; then the minimal number of county 

splits has to be precisely the number of districts minus one, barring some highly improbable set of 
county populations. (A proof is provided on the web site http://lipid.phys.cmu.edu/nagle/Technical .) 
Note also that the number of county splits is not the same as the number of split counties, e.g. one 
county split between three districts counts as two splits. 

17 The estimate for the 2018 adopted PA map was 7 D seats for 50% of the vote (α = 11%) and 9 seats for 
53.6% of the vote (α2 = 3.6%) which indeed was the 2018 outcome. Cervas and Grofman 2020,9 have 
estimated 7.8 D seats for 50% of the vote for the adopted map. 

http://lipid.phys.cmu.edu/nagle/Technical
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Recapitulating what we learn from the MA and PA examples, the underlying goal of the 
proportionality ideal is to assign bias to a plan whenever proportionality is not achieved without 
regard for the source of the bias.  The PRp modification attempts to remove that part of the bias 
that can be attributed to the SMD system which usually brings about a winner’s bonus R greater 
than the proportionality ideal R = 1; Eq. (C.1.2) shows this effect.  The primary goal of the PRp 
modification is to enable proportionality values for unbalanced states to appear consistent with 
values obtained for balanced states which do not need such a modification.18   

As indicated above, determination of PRSMD has to be done by drawing many maps for each 
state.  This is beyond the scope of this paper which has instead developed the approach in the 
main text.   

 
Supplementary Appendix D:  Symmetry in the r(v) graphs 

Let us here consider a very basic definition of symmetry at the district level.  When there is a 
district that has a stronger preference for party A than the average statewide preference, then we 
define district-level symmetry to require that there be another district that has the same stronger 
preference for party B.  Let us label two such districts m and n and designate the preferences of 
these districts by their expected vote share for party A as vm and vn.  Then, if the statewide vote 
share is <V>, this pair of districts is defined to be symmetrical when vm - <V> = <V> - vn.  
Symmetry for the entire state is then achieved if every district is so paired.19  We will call this 
district symmetry, abbreviated DS. For our r(v) graphs, <V> is the Republican vote <VR>. 

The nearly linear r(v) graph for CA in Fig. 9 comes quite close to exhibiting DS, so it is not 
an unattainable ideal.  Indeed, any r(v) graph whose districts fall on a straight line automatically 
exhibits DS.  However, linearity is only a sufficient condition for DS, but it is not necessary.  
District symmetry only requires what is called inversion symmetry.  Inversion about the point 
(r=0.5,v=<V>) transforms each point located at r and v on the r(v) graph into a point at r' = 1 - r 
and v' = 2<V> - v.20  If a graph is transformed by inversion and remains identical to what it was 
before inversion, then we say it has DS.  Fig. D.1 shows an r(v) graph that has three examples 
that have DS.  In addition to the linear one, there are two non-linear examples that are relevant 
for considering responsiveness. All are centered at r = 0.5 and the statewide average v = <V> 
which we chose to be 0.6 for the examples in Fig. D.1.  However, the slope is quite different for 
these three examples at this central point; this slope is named ρsym in the figure legend.  The 
actual responsiveness ρ is essentially the slope at v = 0.5 because that is the midrange where 

 
18 For a balanced state, Eq. (C.1.2) shows that any plausible value of the winner’s bonus does not 

contribute significantly to PR because the <V> - ½ factor is small.  For balanced states NC, OH and 
PA, the actual PR bias is due to the large negative anti-majoritarian values of R.  We also note that a 
redefinition of R to be the slope of the vector from the V=50% point on the S(V) curve instead of from 
the (50,50) center leads one back to the αS measure.  

 
19 For a state with an odd number of districts, at least one district would have vj = <V>. 
20 The reason for choosing the inversion center at <VR> is that this becomes the center of the S(V) graph. 
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districts most likely change party for small statewide vote swings. The legend of Fig. D.1 shows 
values of ρsym and ρ, as well as the winner’s bonus R.21   

Fig. D.1.  Three examples of r(v) graphs 
that have district symmetry (DS) with 
the same average statewide vote <VA> 
= 0.6 for party A.   

 

 

 

 

 

Figure D.2 shows the corresponding S(V) curves which, for simplicity, are obtained by 
uniformly shifting the curves in Fig. D.1 by 0.1 to the left.  Regarding responsiveness, it is 
interesting to compare ρ for the three examples in Fig. D.2. When <VB> = 0.3, the plan 
represented by the dot-dash line has the largest slope and the most seats for minority party B. But 
when <VB> = 0.5, the most responsive plan is the one represented by the dashed line in Fig. D.2 
and by open circles in Fig. D.1. 22  

 
Fig. D.2.  The corresponding S(VB) 

curves assuming uniform swing of the 
r(v) graphs and all-or-nothing seat 
assignment.  

 
 
 
 
 
 
 

 
21 The slope at v = 0.5 is exactly the responsiveness if one uses the uniform swing and all-or-nothing 

district seat assignment.  Likewise, the value of the winner’s bonus R is the slope of the straight line 
from the intersections of the curves with the v = 0.5 vertical line to the central point at r = 0.5. 

22 One can also obtain a rough measure of the number of competitive districts when <VA> = 0.6 by 
counting the number of districts that lie within the window 0.45 to 0.55.  Then, the third plan shown by 
triangular symbols is least responsive, although it gives the minority party the most seats.  However, 
when we consider <V> = 0.7, that same plan is the most responsive because all the curves shift to the 
right by 0.1 which is the same as counting the number of responsive districts in a window which shifts 
to the left by 0.1 in the r(v) graph.  One may also define the competitiveness of individual districts 
using fractional seats probabilities, such as was done by Nagle 2019. 
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Appendix E:  Estimated ideal responsiveness for unbalanced states 
 

The ideal ρmax in Eq. 5.5.1 in the main text should be modified when a state is unbalanced.23   
One might then retain as many fully competitive vj = ½ districts as possible and pack the 
remaining districts with as large a fraction of the majority party voters as possible.  Figure E.1 
shows an example of a corresponding r(v) graph. Let us suppose that the maximum average 
packing of majority voters is vM and that this is large enough for those districts to be completely 
safe.  The responsiveness is then the product of the fraction SC of competitive districts and the 
responsiveness of the fully competitive district with partisan preference ½. When the party A 
vote is VA, one finds SC = (vM – VA)/(vM - ½).24 For example, for an unbalanced state that has VA 
= 0.6 and vm = 0.7, SC decreases to ½ and the 1/ ρmax term in Eq. (5.5.1) increases to 0.2.   

It is also interesting that this model for maximal responsiveness gives the relation 
 SA – ½ = (VA - ½)/(2vM – 1)                            (E5.5.2) 

when vM is large enough for completely safe districts.  This gives winners bonus R = 1/(2vM – 
1).  In the unrealistic case of being able to pack districts with all of the majority party voters (i.e. 
vM = 1), one has R = 1, like the proportional representation ideal.  For a more realistic value of 
vM like 0.75, then R = 2, like the EG ideal.  
 
Fig. E.1  Suggested rank graph to maximize 

responsiveness ρ for a state with 10 
districts, maximal average majority party 
packing vM = 0.7, and average statewide 
vote VA=0.56.  

 

 
 
 
 
 
 
 
 
 

 

 
23 In this general case, it becomes more complicated when the fractional district seat is determined as a 

continuous function of v.  For simplicity in this paragraph, we will simply use all-or-nothing 
assignment to determine the seats when the statewide vote is VA, with ½ assigned to fully competitive 
districts with partisan preference ½.  

24 This follows directly from VA = ½SC + vM(1-SC). 
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Appendix F:  Rank and Seats Graphs for OH, PA, SC and IL 

 

 

 

 

 

 

 

          Fig. SAF1.  r(v) for Ohio                               Fig. SAF2.  S(V) for Ohio 

 

 

 

 

 

 

 

 

  Fig. SAF3.  r(v) for Pennsylvania                      Fig. SAF4.  S(V) for Pennsylvania 
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Fig. SAF5.  r(v) for South Carolina                   Fig. SAF6.  S(V) for South Carolina 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Fig. SAF7.  r(v) for Illinois                                 Fig. SAF8.  S(V) for Illinois 
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