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ABSTRACT To precisely quantify the fundamental interactions between heterogeneous lipid membranes with coexisting
liquid-ordered (Lo) and liquid-disordered (Ld) domains, we performed detailed osmotic stress small-angle x-ray scattering ex-
periments by exploiting the domain alignment in raft-mimicking lipid multibilayers. Performing a Monte Carlo-based analysis
allowed us to determine with high reliability the magnitude and functional dependence of interdomain forces concurrently
with the bending elasticity moduli. In contrast to previous methodologies, this approach enabled us to consider the entropic
undulation repulsions on a fundamental level, without having to take recourse to crudely justified mean-field-like additivity
assumptions. Our detailed Hamaker-coefficient calculations indicated only small differences in the van der Waals attractions
of coexisting Lo and Ld phases. In contrast, the repulsive hydration and undulation interactions differed significantly, with the
latter dominating the overall repulsions in the Ld phase. Thus, alignment of like domains in multibilayers appears to originate
from both, hydration and undulation repulsions.
INTRODUCTION
Diverse physiological processes in living systems depend on
fundamental physical interactions between lipid membranes
acting on the nanoscopic length scale. Of particular interest
in this context are, in addition to intramembrane interactions
(1,2), forces acting between membrane domains/rafts across
the aqueous phase, which are also involved in their corre-
lated mutual alignment. Such positional correlations are
well established for liquid-ordered (Lo)/liquid-disordered
(Ld) domains in model lipid multibilayers (3–11). Several
groups have established compositional phase diagrams for
mixtures of high-melting lipid, low-melting lipid, and
cholesterol, which exhibit Lo/Ld phase coexistence over a
broad range of compositions and temperatures (12,13).
These systems mimic mammalian outer plasma membranes
and make it possible to study domain properties under well-
defined conditions. Most recently, we reported structural de-
tails of Lo/Ld phases in two ternary lipid mixtures using a
global small-angle x-ray scattering (SAXS) analysis for
coexisting lipid domains (11). This analysis relies on the
above-mentioned mutual alignment of like domains. How-
ever, domain alignment is also of biological relevance, for
example, in the context of the immune response, where
organization of receptor-ligand domains occurs during
T-cell adhesion (14,15). Both the formation of such domains
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and the adhesion affinity depend strongly on thermal fluctu-
ations and, consequently, on the bending rigidity of mem-
branes (16,17). It is therefore reasonable to expect that
fundamental intermembrane interactions will play an impor-
tant role also in receptor-ligand domain alignment.

Within the broad Derjaguin-Landau-Verwey-Overbeek
(DLVO) paradigm (18), the fundamental long-range interac-
tions between soft material interfaces, mediated by their
molecular environment, such as solvation (hydration)
interaction, electrostatic interaction, and van der Waals
interaction, can be treated independently and additively.
However, this additivity Ansatz is in general not vindicated
for entropically driven bending undulation interactions,
which warrant a more sophisticated approach (18–20).

Besides the fundamental role of entropic membrane un-
dulations, their relation with the membrane bending rigidity,
Kc (19), and through it their connection with diverse physi-
ological processes, has spurred a sustained scientific interest
(21). Shape analysis of giant unilamellar vesicles (GUVs)
(22), diffuse x-ray scattering from oriented lipid multibi-
layers (23), and GUV micropipette aspiration (24) are all
techniques exploiting this connection, but so far, none of
them has been able to simultaneously determine the bending
moduli for coexisting membrane phases. On the other hand,
macroscopically sized domains form distinct lamellar lat-
tices in multibilayer systems, making it possible to apply
osmotic stress experiments (8,25). In such experiments,
osmotic pressure is maintained by, e.g., large neutral poly-
mers, such as polyethylene glycol (PEG), which do not
http://dx.doi.org/10.1016/j.bpj.2015.05.003
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penetrate into the interbilayer water layer, whereas the cor-
responding bilayer separation and more recently also the
specific line broadening due to fluctuations are measured
by SAXS. Several groups, including ours, have previously
applied this approach to study interactions between macro-
molecules, including lipid bilayers (8,25–34).

The bare long-range DLVO interaction components,
which couple macromolecular surfaces through their molec-
ular environment, get inextricably intertwined through the
thermally driven conformational fluctuations of the soft in-
terfaces, making detailed predictions of the overall interac-
tion nearly impossible. Therefore, many studies in the past
have resorted to describing such complicated thermal fluctu-
ation effects by different mean-field/additivity approxima-
tions, where conformational fluctuation effects on the
bare interaction potentials are included self-consistently
(19,20,35–37). In contrast, additivity/mean-field approxi-
mations can be altogether avoided in the case of simulations
that start from fundamental long-range DLVO interaction
components and need no additional approximations to yield
an accurate estimate for the total osmotic pressure in the
system (38,39).

To understand the coupling between bare interactions and
thermal undulations in phase-separated systems, we apply a
gradient-based optimization algorithm to iteratively adjust
the parameters inMonte Carlo (MC) simulations, i.e., the co-
efficients describing the strength and range of intermembrane
interactions, aswell as the bending rigidity characterizing the
thermal undulations, to best match simulation results with
the experimental osmotic stress data for coexisting Lo/Ld
phases. We demonstrate the capability of the simulation-
driven analysis choosing a well-studied mixture of dioleoyl
phosphatidylcholine (DOPC), distearoyl phosphatidylcho-
line (DSPC), and cholesterol (Chol) (40–42), previously
shown to exhibit Lo/Ld domain alignment in the phase-coex-
istence regime (11). We find that Lo domains are about three
times more rigid than Ld domains, which exhibit significant
contributions to domain repulsion from bending fluctuations.
On the other hand, hydration forces decay much slower with
domain separation between Lo domains. In turn, attractive
van derWaals interactionswere found to be of similarmagni-
tude between Lo domains and between Ld domains. Our
results provide insight into the strength and distance depen-
dence of forces at play between like domains as a prerequisite
to devising theories for domain alignment.
MATERIALS AND METHODS

Sample preparation

DSPC, DOPC, and Chol were purchased from Avanti Polar Lipids

(Alabaster, AL) and used without further purification. PEG with an average

molecular weight of 8000 was obtained from Fluka Chemie (Buchs,

Switzerland) and used as received.

After weighing, lipids were dissolved in chloroform/methanol 2:1 at

concentrations of 10 mg mL-1. The supplier-provided molecular weights,
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accounting for an additional water moleculewith DOPC, were used for deter-

mining stock concentrations. We prepared the ternary lipid-only mixture

DOPC/DSPC/Chol (0.42:0.37:0.21) in a glass vial and evaporated the organic

solvent under a gentle nitrogen stream at 30�C. This lipid composition and its

tie line lie well inside the Lo/Ld phase-coexistence region according to Zhao

et al. (40) and Heberle et al. (41), and the domains’ structural properties have

already been investigated by different methods (11,42). The remaining sol-

vent traces were removed by placing the samples in a vacuum overnight.

The next day, 18 MU cm water (UHQ PS, USF Elga, Wycombe, United

Kingdom) was added at 20 mL water/mg lipid and the mixtures were fully

hydrated at 50�C for 4 h with repeated freeze-thaw cycles.

To exert osmotic pressure on multilamellar lipid vesicles, samples were

cooled to room temperature after hydration and aliquots were overlaid with

PEG dissolved in water, yielding final concentrations of 1–42 wt% PEG in

water. Samples were protected against oxidation with argon, and the vials

were closed, taped, and stored at 4�C for 7–10 days prior to measurement.

The osmotic equation of state for PEG, connecting its osmotic pressure with

its solution concentration, is well known (43) and allows for an accurate

determination of PEG osmotic pressure P by using previously reported

high-resolution data (44).
X-ray measurements

SAXSwas performed at the Austrian SAXS beamline at ELETTRA, Trieste,

Italy (45,46), at a wavelength of 1.54 Å and an energy dispersion, DE/E, of

2.5 � 10�3. We used a mar300 Image Plate 2D detector (marresearch,

Norderstedt, Germany) covering a q-range from 0.2 to 7.1 Å�1 and cali-

brated with silver-behenate (CH3(CH2)20�COOAg) with a d-spacing of

5.838 nm (47). Samples were filled into reusable quartz-glass capillaries

and kept in a brass sample holder connected to a circulating water bath

(Huber, Offenburg, Germany). The samples were equilibrated for 10 min

at (20.0 5 0.1)�C before exposing them for 30 s to the x-ray beam.

The two-dimensional detector signal was radially integrated with FIT2D

(48,49). Water background subtraction for samples without PEG was per-

formed with Primus (50). For osmotically stressed samples however, addi-

tional scattering from PEG made a standard background subtraction

impractical. Since the essential information in this case was the shapes

and positions of the Bragg peaks, we subtracted approximate backgrounds,

obtained by interpolating between SAXS signals of pure water and PEG/

water mixtures. Alternatively, one could just subtract an arbitrary smooth

function from the measured spectra.

The reduced data were then fitted using a recently published, full q-range

analysis method for coexisting liquid/liquid membrane domains (11). We

checked the x-ray analysis for coexisting phases by comparing it with

PEG-free, homogeneous samples prepared at the published tie-line endpoint

concentrations of 0.79:0.09:0.12 for the Ld and 0.05:0.65:0.30 for the Lo

phase (41). These samples were also helpful for constraining some model

details (e.g., the widths and distances between molecular subgroups

composing the lipid heads) in the x-ray analysis.

For the x-ray analysis, the contribution of each individual phase ismodeled

with a bilayer structure and a superimposed membrane lattice. The lattice

description is based on a modified Caillé theory (51,52) and therefore yields

the average membrane periodicity, d, and the line shape parameter, h, which

is connected to the mean-square fluctuation of the membrane spacing via

D2 ¼ hd2/p2 (32). The bilayer structure of each phase is then modeled sepa-

rately via probability distributions of quasi-molecular fragments (53).

Of most importance, the full q-range analysis allowed us to quantify the

magnitude of fluctuations for coexisting domains. For both phases of stress-

free samples, this also yields accurate electron density profiles, from which

the bilayer thickness could be obtained; but this was not possible when

osmotic pressure was applied. Instead, the osmotic thickening of dB was

calculated using dB(P) ¼ dB(0) � (KA þ P � d(P))/(KA þ P � dB(0))

(31), where the area extension modulus, KA, was estimated from published

micropipette aspiration experiments on single lipids and binary lipid mix-

tures (54,55), as detailed in Section S1 of the Supporting Material. The
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overall analysis was rather insensitive to uncertainties in KA, because the

maximal change in bilayer thickness was only slightly larger than the uncer-

tainty of the fit (52%). The definition of the bilayer thickness, dB, was

found to be more important. In principle, one could determine optimal

values of dB via a joint fit with free MC parameters, but this problem is

underdetermined and led to bizarre values of dB for different data sets

(56). Instead, we defined dB as the distance between the remotest lipid

atoms, also known as the steric bilayer thickness (29); this yielded good

fits and comparable results and at the same time was directly accessible

from the SAXS analysis. Specifically, we used dB¼ 2(zCholCH3þ sCholCH3),

where zCholCH3 and sCholCH3 are the position (measured from the bilayer

center) and the width, respectively, of the CH3 groups in the lipid head

choline. Within measurement accuracy, the definition used in Petrache

et al. (32) yields equal values.
Membrane MC simulation

The simulation code used has been described previously in detail for a sin-

gle membrane between two walls and for a stack of membranes (38,39,56).

For completeness, but also to highlight our modifications, we briefly sum-

marize its basic elements.

The system under consideration consists of a stack of M fluctuating and

interacting membranes of size L � L, as depicted in Fig. 1. The displace-

ment of the mth membrane from its average plane is denoted as um(x,y),

the average distance between membranes as a, and the bending rigidity

as Kc. Imposing periodic boundary conditions in all directions yields the

Hamiltonian of a stack of membranes:

H ¼
XM�1

m¼ 0

Z �
Kc

2

�
V2um

�2 þ FðamÞ
�
dx dy; (1)

where F denotes the bare interaction potential, given here by the hydration

repulsion and the van der Waals attraction, and a ðx; yÞ ¼ u ðx; yÞ�
m mþ1

umðx; yÞ þ a denotes the local distance between two membranes. We

furthermore require that am R 0, meaning that membranes cannot

interpenetrate.

To reduce the degrees of freedom of the system to a finite amount, the

membranes are discretized on a square N� N lattice. The simulation is per-

formed in the constant pressure ensemble (57), which converges for this

model faster than constant volume simulations (39). MC updates are pro-

posed in a and in the complex coefficients um(qx,qy) of the Fourier transfor-
FIGURE 1 Real-space snapshots of equilibrated Ld simulations at zero (left)

their average thickness. Deviations from the periodic lattice are color code

bottom-most membranes are equal. The most prominent effects of external pressu

visible. To see this figure in color, go online.
mation of um(x,y). Simulating in Fourier space allows for larger moves,

thereby accelerating equilibration (39). After every MC step (MCS), which

corresponds to degree-of-freedom (N2M þ 1) update proposals, we recen-

tered the coordinate system to correct for small center-of-mass movement

as a new feature in the calculations.

Simulations were performed for L ¼ 700 Å, several different N in

{6,8,12,16,24,32},M¼ 8, equilibration lengths of 3�103 MCS, and collec-

tion lengths of 104 MCS, which typically exceeded the autocorrelation time

by a factor of 100. Simulations were started with MCS sizes estimated from

an approximative theory (20) and then subsequently optimized during

equilibration, applying either dynamically optimized MC (DOMC), or—

as a new feature—the acceptance ratio method (ARM) as a backup if

DOMC fails (56,58).

Several observables can be determined from converged simulations, but

the two most important quantities for comparison with SAXS experiments

are the temporally and spatially averaged distance between membranes

dW ¼ hai and the time average of its fluctuations,

D2 ¼ �ðzmþ1ðx; yÞ � zmðx; yÞ � dB � dWÞ2
�
; (2)

where the long bar denotes spatial averaging over (m,x,y), angled brackets

denote time averaging, and zmðx; yÞ ¼ umðx; yÞ þ m� ðaþ dBÞ is the posi-

tion of the mth membrane in real space. Specifically, dW corresponds to the

experimental thickness of the water layers separating the lipid bilayers,

whereas D is related to the experimental Caillé parameter h, as discussed

above.

The computed observables change significantly with N/L (38,39), so sim-

ulations were performed for a sequence of values of N and the observables

were then extrapolated toward N/L / N. Further details of this finite size

convergence are given in Section S2 in the Supporting Material.

It should be emphasized that our explicit purpose of making contact with

the x-ray structure factor and the interactions between bilayers requires

much larger systems than can be presently envisioned either for all-atom

simulations, used to obtain electron density profiles, or even for the most

coarse-grained molecular simulations (59). We require M bilayers in a

stack, each bilayer having a large lateral size L. It has been shown in pre-

vious work (38) that L ¼ 700 Å and M ¼ 8 are sufficient to obtain accu-

racies of 1% for dW and D, and that would require ~130,000 lipids with

associated water in typical molecular simulations. Apart from simulation

size, the necessary timescales, which scale with the fourth power of the un-

dulation wavelength (see pp. 77–78 in Pabst et al. (60)), render molecular

dynamics simulations for that purpose unfeasible. Furthermore, to fit the
and finite (5.5 MPa) osmotic pressure (right). Membranes are drawn with

d. Due to 3D periodic boundary conditions, the top-most (orange) and

re, a compression of the stack and a reduction of the fluctuations, are clearly

Biophysical Journal 108(12) 2833–2842
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experimental data requires on the order of 100 separate simulations, distrib-

uted on multiple optimizations from different start points. In the membrane

MC simulations we employ, each bilayer is reduced to a network consisting

of N nodes in each of the two lateral directions, and each node has only one

degree of freedom.
FIGURE 2 Hamaker coefficient, H, for hydrocarbon multilayers of

height dB and separation dW in water. Highlighted are the applied values
Bare interaction potentials

For uncharged membranes, the potential at bilayer separation a is modeled

canonically by

FðaÞxAlexp
�
�a

l

	
� H

12pa2
: (3)

The first term in Eq. 3 is the well-established empirical form of the solvent-

mediated hydration interaction, which has been argued to originate from

of H for Ld and Lo, which are described in the main text. To see this figure

in color, go online.

changes in variousmeasures of order for thewater structure at themembrane

interface (62–64), with interaction strength A and decay length l, which is

typically in the range of 1–2 Å (32). The second term describes the ubiqui-

tous van der Waals interaction potential for two planar semiinfinite layers,

with H being the Hamaker coefficient, which in general also depends on

bilayer separation a, H¼ H(a) (see p. 15 in Parsegian (65)). This functional

form is convenient because it can in fact describe the cases of either two

finite-thickness layers interacting across a solvent layer or effective pairwise

interactions in an infinite stack of finite-thickness layers (66). For large sol-

vent layer thickness, the nonpairwise additive effects in the latter case

become negligible and the van der Waals interaction potential for the two

cases follows exactly the same separation dependence.

Due to the divergence of the van der Waals potential for a / 0, the 1/a2

term is cut off for a < 1 Å (38). In experiments, the collapse of charge-

neutral bilayers due to van der Waals forces is avoided by very short-range

steric interactions established by McIntosh et al. (61) that occur at signifi-

cantly higher osmotic pressures than those relevant for the experiments pre-

sented here (see also Fig. S5). Although we added such an additional steric

repulsion of the form Astlst exp( � a/lst) to Eq. 3, with Ast ¼ 3.6 GPa and

lst¼ 0.6 Å according to (61), it proved unimportant for realistic parameters.

To calculate the Hamaker coefficient, H, ab initio, we had to approximate

the lipid bilayers by pure hydrocarbon. Although this model gives only a

first-order estimate for the van der Waals interactions of fluctuating lipid

bilayers, it is, to our knowledge, the best available approximation in the

absence of data on the dielectric response of PC lipids. Further effects of,

e.g., lipid-headgroup dipolar-moment fluctuations (67), could be considered

as well, but they would be important only at very small separations where

hydration forces dominate and the exact form of the van der Waals interac-

tion is irrelevant. Specifically, we calculated H for an infinite stack of hy-

drocarbon layers in water, based on a full multilayer Lifshitz formulation

(66). The ranges for the hydrocarbon thicknesses, dB ¼ 45–60 Å, and the

water spacings, dW ¼ 5–60 Å, were motivated by our experimental data.

In this calculation range, differences in the Hamaker coefficient were within

10%. For our MC simulations, the exact value of H matters most when all

forces are of comparable magnitude, that is, at vanishing external osmotic

pressure. We therefore used the H values of 4.08� 10�21 J¼ 4.08 zJ for Ld

and 4.15 zJ for Lo domains (see Fig. 2).

Both components of the bare potential, i.e., hydration and van der Waals

interactions, cause partial bare pressures between neighboring membranes

given by

PhydðdWÞ ¼ Aexp

�
�dW

l

�
; PvdWðdWÞ ¼ � H

6pd3W
: (4)

Equation 4 was derived from PjðdWÞz� vFjðdWÞ=vdW. The difference

from the exact relationship, P ðd Þ ¼ h�vFðaÞ=vai, was found to be less
j W

than the simulational uncertainty. For comparison to previous reports using

mean-field/additivity approximations for modeling undulation interactions,

one can obtain an effective decay constant lund by subtracting bare contri-
Biophysical Journal 108(12) 2833–2842
butions from experimental data, i.e., Pund ¼ P � Phyd � PvdW (39). The un-

dulation decay constant then results from a fit of Pund ¼ Aund exp( � dW/

lund), with the two adjustable parameters Aund and lund. Because the undu-

lation pressure deviated significantly from a perfect exponential, we limited

the fit to large separations (dW R 14 Å).
Optimizing parameters against experimental data

Calculation of the Hamaker coefficientH, as described above, allowed us to

reduce the number of free-fitting parameters for the simulations to three,
~L ¼ ðA; l;KcÞ, for a joint analysis of domain separation and fluctuation

data (see below).

We implemented a least-squares routine with Matlab (68), utilizing its

trust-region reflective optimization algorithm to minimize the sum of the

squared residues

c2
�
~L
� ¼

X
i

�
dW;i � dW

�
Pi;~L

�
UeffðdW;iÞ

�2

þ
�
Di � D

�
Pi;~L

�
UeffðDiÞ

�2

;

(5)

where dW,i and Di are the experimentally determined values at fixed osmotic

pressure P , d ðP ;~LÞ and DðP ;~LÞ are simulation results, and U (f) is the
i W i i eff

effective uncertainty of a given quantity f, derived from

U2
effðf Þ ¼ U2

�
fexp

�þ U2ðfsimÞ þ
�
vfsim
vP

� UðPiÞ
�2

: (6)

The agreement between model and data was evaluated by the reduced c2

value, c2 ¼ c2=~N, where ~N equals the number of data points minus the
red

number of free parameters (see p. 268 of Taylor (69)). The Jacobian for

this gradient-based algorithm and the derivative in Eq. 6 were computed

with the histogram reweighting method described in Section S3 in the Sup-

porting Material. Once the iteration converged, the uncertainties of the fit

parameters were determined from the curvature of c2
red. To locate the global

optimum, several iterations from randomly chosen initial parameter sets

were performed.

To test our implementation, we fitted simulation results determined for

one reasonable parameter set, ~L
0
, by starting the least squares from several

different initial starting points ~L. Within three to five iterations, these opti-

mizations converged toward the correct values, ~L
0
, thereby indicating that

the weighted-histogram-based differentiation and the fit were correctly im-

plemented. For the experimental data sets, convergence was usually

reached within 10 iterations. However, due to the stochastic nature of the

simulations and the consequential randomness of results and derivatives,
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the optimization algorithm propagated poorly in flat regions, i.e., small
~Vc2

red. Because c
2
redð~LÞ is a smooth function and its gradient has to vanish

at extrema, the efficiency of the optimization algorithm decreased the closer

it got to the optimum. This was another reason for starting several indepen-

dent iterations. Alternatively, one could have used optimization algorithms

specialized for simulations (70–73), but the existing implementations did

not satisfy our needs.

As a further test case, we reanalyzed previously published osmotic

pressure data of pure dimyristoyl phosphocholine (DMPC) bilayers (32),

yielding very reasonable values and a good agreement between simulations

and experiments. Details are given in Section S4 in the Supporting Material.

Thus, we conclude that our method provides a robust analysis for interac-

tions in fluctuating membrane assemblies.
RESULTS AND DISCUSSION

X-ray analysis

SAXS patterns were analyzed as detailed previously by a
Caillé theory-based analysis (11). Fig. 3 showcases the anal-
ysis for two samples at osmotic pressures of 34 kPa and 2.4
MPa, demonstrating that shapes and positions of Bragg re-
flections are well reproduced. Consistent with previous
studies (8,9,11), we find sharper and more prominent Bragg
reflections for the Lo phase due to its decreased bending
fluctuations, compared to the coexisting Ld phase. Fits for
all other samples are shown in Section S5 in the Supporting
Material. For increased osmotic pressures, Bragg peaks
shifted toward higher q and became more prominent. This
is due to the decrease of bilayer separation associated with
a reduction of bending fluctuations, in agreement with pre-
vious reports (32,74).

Peak line shapes for Lo and Ld domains were found to be
well described by the applied Caillé theory, particular at low
osmotic pressure (Fig. S4). Since this theory is incapable of
fitting peaks from lamellar gel phases (75), we conclude that
neither peaks assigned to the Lo nor those assigned to the
Ld phase can originate from a gel phase. This is also consis-
tent with compositional DSPC/DOPC/Chol phase diagrams
FIGURE 3 Calculated scattering intensities (solid lines) from full q-range

analyses, compared with recorded SAXS data from coexisting phases (dots)

for two different osmotic pressures,P. Bragg reflections from aligned Lo and

Ld domains are indicated by symbols O and X, respectively.
reported in the literature (40,41) and a recent SAXS study
from our lab, which reported for the identical lipid mixture
that the structural parameters match those of Lo and Ld
phases at the tie-line endpoints (11).

Fit quality of SAXS spectra worsened for increased PEG
concentrations (see Fig. 3 or Section S5 in the Supporting
Material). The underlying Caillé theory probably loses its
applicability for the increased order experienced at elevated
osmotic pressures. Although the effects on domain separa-
tion were negligible, fluctuations determined from the fits
became increasingly skewed with osmotic pressure, in
particular for Lo domains (see below).

The effect of osmotic pressure on the lamellar repeat
spacing, d, as determined from the SAXS analysis, is plotted
in Fig. 4. At high osmotic stress, the distance between bila-
yers is effectively set by the repulsive hydration interaction,
which dominates the repulsive fluctuation interaction and
the attractive van der Waals interaction. As osmotic pressure
is decreased, the water spacing between bilayers, dW, in-
creases and the fluctuation interaction eventually dominates
the hydration interaction. As the osmotic pressure is reduced
to zero, the attractive van der Waals force balances the total
repulsive forces, resulting in finite dW and d values.

Within experimental uncertainty, the two isotherms in
Fig. 4 are rather similar when the difference in membrane
thickness, determined by dLdB ¼ ð48:551:0Þ�A and dLoB ¼
ð61:351:2Þ�A, is considered. Of course, identical isotherms
would imply that all the interactions are identical. However,
significant experimental differences were observed in the
fluctuation behavior, as detailed below, corroborating the
crucial advantage of jointly analyzing fluctuations and
osmotic pressure isotherms to obtain the interaction param-
eters (32).
Optimized simulations

The experimental data and the results of optimized simula-
tions are compared in Fig. 5, and Table 1 lists results for the
interaction parameters. Experimental errors for dW and h

were obtained from the SAXS analysis and those for P
FIGURE 4 Osmotic pressure, P, versus membrane periodicity, d, for Ld

and Lo determined by SAXS analysis. Dashed lines are meant solely as a

guide for the eye. The small offset, d ¼ 200 Pa, is necessary for plotting

P ¼ 0 on a logarithmic scale. To see this figure in color, go online.

Biophysical Journal 108(12) 2833–2842



FIGURE 5 Osmotic pressure (top) and fluctuations (bottom) vs water-layer thickness for best fit of membrane MC simulation (cyan/orange) against SAXS

data (gray). Solid lines were obtained by exponentially interpolating fluctuation contributions. The small offset, d¼ 200 Pa, is necessary for plotting P¼ 0 on

a logarithmic scale. To see this figure in color, go online.

TABLE 1 Optimal parameters for describing the coexisting

Lo/Ld phases

Ld Lo

Kc/zJ 44 5 10 120 5 20

A/Pa 108.350.2 108.150.2

l/Å 1.37 5 0.15 1.74 5 0.15

c2
red 1.5 5 0.5 5.8 5 0.5

The mixture was DOPC/DSPC/Chol (0.42:0.37:0.21). Errors are reported

as obtained from the fitting routine (see text for further details).
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were estimated to equal the pipetting error of 6% for viscous
PEG solutions. To quantify the agreement between data and
simulations, we report c2

red, which becomes ~1 if the differ-
ences are compatible with experimental errors (see p. 268 in
Taylor (69)). This is the case for the Ld phase, where simu-
lations and experimental data match ideally, but the
mismatch for Lo is larger than expected (c2

red ¼ 6).
We are inclined to attribute this discrepancy for Lo at

least partially to the limited applicability of the Caillé theory
for highly ordered systems, as described in the previous sec-
tion. Indeed, deviations in D are especially pronounced for
small bilayer separations, i.e., at high osmotic pressures.
In light of these discrepancies, we suggest that the experi-
mental uncertainties determined for the Lo phase are rather
too small, because they do not take into account the
decreasing applicability of the Caillé theory for more
ordered phases whose fluctuations are suppressed by low
hydration.

Although differences in P(dW) are insignificant between
Ld and Lo (see also Fig. 4), fluctuations of the Lo phase,
containing most of the DSPC and about thrice as much
cholesterol as Ld, are evidently smaller (Fig. 5). In the con-
tinuum mechanics treatment used in the simulations, this in-
crease in bilayer stiffness is captured by a threefold-higher
Kc for Lo (see Table 1).

The values obtained by us for Kc compare well with pre-
viously reported results obtained by different techniques.
Several groups have measured the bending rigidities of
binary DOPC/cholesterol mixtures, which ranged from
60 5 8 to 100 5 25 zJ and were found to be largely un-
changed by the cholesterol content (76–79). This supports
the Kc ¼ (44 5 10)zJ obtained for Ld, where DOPC is
Biophysical Journal 108(12) 2833–2842
the main constitutent (41). In contrast, a larger concentra-
tion of saturated lipids, for which Kc does increase with
cholesterol (76), is present in the Lo phase, so a larger
bending rigidity would be expected for Lo than for Ld.
Our finding of Kc ¼ 1205 20 zJ for the Lo phase is consis-
tent with this expectation.

Furthermore, molecular dynamics simulation results are
available for comparison. Khelashvili et al. (80) used the re-
ported tie-line endpoint compositions (41) to separately
simulate the Ld and Lo phases, obtaining bending moduli
of 80–130 zJ for Ld and 340–440 zJ for Lo. Although these
values are large compared to our results, both methods find a
strong increase of Kc between Ld and Lo.

In agreement with Pan et al. (81), we find that a rather
simple model suffices to relate bending to area extension
moduli for cholesterol-rich samples (82). Based on the
assumption that the main contribution to membrane rigidity
comes from the stiff cholesterol ring of size d0, Pan et al.
used the relationship d02 ¼ 12Kc=KA. For our samples,
with KA ¼ 430 mN m-1 and 2100 mN m-1 (see Section S1
in the Supporting Material for details), this equation yields
d0 ¼ 11 Å and 8 Å for Ld and Lo, respectively, in good
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agreement with actual cholesterol ring sizes of ~9 Å, giving
additional support to our analysis.
Interdomain forces

As stated previously, the differences between Ld and Lo in
the P versus dW data sets are small. However, a more thor-
ough investigation of these quantities yields interesting in-
sights. Because good fits to these data were obtained, the
total pressure P is readily dissected into its individual con-
tributions from the fundamental surface forces, whose func-
tional dependences are plotted in Fig. 6.

The thicker Lo bilayer causes an increase in the Hamaker
coefficient, but only by 3% compared to that of the Ld
phase; this is a minor difference in the van der Waals inter-
action that is hardly noticeable in the PvdW curve in Fig. 6.
For small bilayer separations, the hydration interactions are
of similar magnitude and represent, as expected, the domi-
nant contribution to the total interaction potential for both
phases. Despite these similarities, the fluctuation pressure
starts to surpass the hydration pressure already at much
smaller separations, dW, for Ld than for Lo. This difference
implies that, in contrast to the ordered phase, the undulation
interaction becomes the most important repulsive interac-
tion over a wider range of bilayer separations in the case
of the disordered phase. Stronger repulsions due to fluctua-
tion interactions are of course reasonable because thermal
undulations were found to be significantly increased for
FIGURE 6 Partitioning of total pressure, P, into contributions from hy-

dration, Phyd, van der Waals, Pvdw, and undulation interactions, Pund, for

Ld (upper) and Lo (lower). The large open black circles show the values

of the separation, dW, at which hydration and undulation pressure are equal.

The small offset, d ¼ 200 Pa, is necessary for plotting P ¼ 0 on a logarith-

mic scale. d is also responsible for the deviation of the hydration pressure

from a straight line at low P. To see this figure in color, go online.
the Ld phase (Fig. 5). Nevertheless, even in the Lo phase,
the thermal undulation interaction dominates the hydration
force over the most important, well hydrated range of dW,
starting at separations of 12 Å.

We obtained almost exponentially decreasing fluctuation
forces of the scaling form f exp( � z/lund), with effective
decay lengths of lund z 3.3 Å and 3.7 Å for Ld and Lo,
respectively. The ratio of fluctuation to hydration decay
length lund/l is obtained as 2.4 for Ld and 2.1 for Lo.
Mean-field theory predicted this ratio’s value as 2.0 (20),
but values of 2.4 and 2.0–3.0 have been reported from
simulations (38,39) and from other experiments (8,32,33),
respectively.

Compared to Lo, a significantly shorter decay length for
the hydration interaction pressurewas found for the Ld phase.
At present, the origin for this difference is unclear. However,
it is this difference combined with the larger fluctuation force
that gives P versus dW curves that are nearly the same for Lo
and Ld, both with fully hydrated dW close to 17 Å.

Domain alignment across interlamellar aqueous phases
has recently been hypothesized to be caused by water-
network mismatch due to the different hydration properties
of Lo and Ld phases (3). In support of this postulation, we
observed significantly different hydration forces and nearly
equal van der Waals forces for both phases. The aforemen-
tioned hypothesis neglected, however, influences from ther-
mal undulation interactions, which we now find to differ
considerably between coexisting Lo and Ld domains. The
importance of thermal fluctuations is especially striking
near full hydration, where undulation and van der Waals
pressures surpass hydration repulsion by an order of magni-
tude (see Fig. 6).
CONCLUSIONS

We have evaluated the fundamental long-range interactions
between coexisting Lo and Ld domains in DOPC/DSPC/
cholesterol, which is a frequently used model system
for mammalian outer plasma membranes (11–13,40–
42,82,83). Because we could do this at concentrations where
Lo and Ld domains coexist, we were able to avoid all uncer-
tainties in the phase diagram and its associated tie lines be-
tween Lo and Ld phases. This work combines methodology
from three separate inputs: SAXS/osmotic stress experi-
ments, comprehensive MC simulations, and detailed calcu-
lations of van der Waals interactions.

The reported values for fundamental surface forces and
bending moduli are, to our knowledge, the first of their
kind to be directly obtained from coexisting Lo/Ld do-
mains. The underlying full q-range SAXS analysis allowed
us to quantify the extent of fluctuations and capture their
dependence on osmotic pressure, which proved essential
for determining the bending rigidities of cholesterol-rich
phases. We obtained bending moduli of 44 zJ for Ld
and a roughly threefold higher value for Lo domains,
Biophysical Journal 108(12) 2833–2842
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attributable to their larger concentrations of saturated lipid
and cholesterol.

Although we obtained almost identical van der Waals
interactions for aligned Lo and Ld domains, the remaining
interactions turned out to be strikingly different: decay
lengths of the hydration pressures differed by 25% between
Lo and Ld phases, and repulsions due to thermal
fluctuations were found to be significantly increased for
Ld. These findings provide evidence that a combination
of hydration repulsion and fluctuation-driven undulation
repulsion must be considered in any quantitative explana-
tion of the long-range positional correlations between
aligned Lo and Ld domains. In particular, the strong
entropic contribution from undulating Ld domains may
be a leading term to be considered. We therefore expect
that our study will form the basis for a concise theory of
domain alignment.
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S1 Area extension modulus estimation
The dependence of bilayer thickness on osmotic pressure P is accounted for via the area
extension modulus KA and given by the equation1

dB(P ) = dB(0) KA + P d(P )
KA + P dB(0) . (S1)

We estimated KA for our coexisting liquid phases based on published data for single
lipids and binary lipid mixtures by Rawicz et al.2,3 The Ld phase under investigation
consists essentially of DOPC, with approximately 10 mol% cholesterol.4 Interpolating
linearly between the two published values for 0 and 50 mol% cholesterol in DOPC2

yields KA(Ld) = (430± 30) mN m−1.
In the coexisting Lo phase, the main constituent is the saturated lipid DSPC, which

is accompanied by ca. 30 mol% cholesterol.4 Unfortunately, published KA values for
saturated lipids are sparse. As a compromise, we interpolated linearly between pure
DMPC (0 mol% cholesterol) and a 1:1 mixture of sphingomyelin/cholesterol,2,3 yielding
KA = (2100± 500) mN m−1 for our Lo phase.
As pointed out in the section X-ray measurements of the main text, knowing the

magnitude of KA is more important than getting the precise number. That is because
the biggest estimated change in bilayer thickness turned out to be just 0.3Å. In principle,
such a subtle difference in dB would be resolvable with SAXS, but not with the additional
scattering signal due to PEG.

S2 Finite size convergence
With open edges, one generally expects a ‘surface’ perturbation proportional to the rel-
ative size of the boundary to the interior, i.e. proportional to 1/N for our systems. As is

S1



well known, periodic boundary conditions generally reduce this perturbation. They also
speed up the convergence with system size, from 1/N to 1/N2 in a case well documented
by Bonner and Fisher5 (note their Fig. 1) and in the case of the one-dimensional Ising
model the convergence is exponentially fast with periodic boundary condions. While
another case with very slow convergence is known,6 that one is due to very long range
interactions not present in our membrane stacks. For periodic boundary conditions, the
exact solution of a harmonic approximation to Eq. (3) suggests that dW and ∆ converge
asymptotically like y(N) ∼ c∞ − c2/N

2, i.e. convergence is expected to be faster than
1/N and, in agreement with the previous simulations,7 our results are consistent with a
dominant 1/N2 asymptotic convergence, allowing, of course, for higher order terms.
We perform simulations for several ‘densities’N ∈ {Nmin, . . . , Nmax} and fit them with

the function y(N) = c∞ +
∑kmax
k=2 ck/N

k. Together with the originally proposed kmax =
3 and N ∈ {6, . . . , 32}, this method yields sufficiently precise continuum estimators
c∞, compared to the experimental uncertainties.8 However, we found that varying the
arbitrary parameters kmax and Nmin influenced the final estimator stronger for some
simulations (e.g. high pressures) than for others. To obtain more reliable uncertainties
and perhaps even better continuum estimates, we perform now several extrapolations,
with different values for kmax and Nmin, but always using the highest possible Nmax.
By not changing Nmax, we weight the most significant simulations (with the highest
density) stronger. This procedure yields a list of results for c∞,l, which we average for
the final estimator. Its uncertainty is then determined by the individual errors of c∞,l
(statistical uncertainty of observables due to finite simulation length) and their standard
deviation (error due to finite simulation density). This procedure is closely related to
the Jackknife technique.9,10
Comparisons between these improved Jackknife estimators and estimators obtained by

the original method are given in Fig. S1. The relative difference in the estimators were
less than 5% for all performed simulations, but most importantly, Jackknife produces a
meaningful uncertainty.

S3 Efficient differentiation
A single simulation of a particular set of parameters ~Λ = (P,A,H, λ,Kc, . . . ) contains
more information in the generated time series, than the aforementioned observables
which are determined by averaging. By reweighting the simulated histogram of density
of states, it is possible to compute these quantities over a certain range of simulation
parameters and thereby also derive their gradients.11–13 14 This well recognized method
was briefly mentioned for membrane MC simulations,15 but has not been implemented
for them previously.
We calculated the expectation value of an observable f(u, ā) for a different set of

parameters ~Λ′ from a simulation performed at ~Λ by

〈f〉~Λ′ =
∑
f~Λ′(u, ā) · exp (−δG/kT )∑

exp (−δG/kT ) , (S2)
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Figure S1: Finite size convergence of membrane spacing dW vs membrane “density” N
of Ld domains according to Tab. 1 at intermediate (top) and high osmotic
pressures P (bottom). A variant of Jackknife allows us to obtain reasonable
errors for the estimator. Statistical uncertainties for plotted finite N data are
less than 10−2 Å.
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where the sums extend over all realized configurations and δG is the change in the Gibbs
energy of each state (u, ā) upon changing ~Λ to ~Λ′. Most parameters could be separated
from u and ā in our case, yielding δG(u, ā) = δΛ · ξ(u, ā). This allowed us to store only
the time series of ξ instead of all realized states. The parameters P , A, H, and Kc were
separable in this way, yielding

δG

V
= δP ξP + δAλ ξA −

δH

12π ξH +N2 δKc

2 ξKc, (S3)

where ξP = ā/dW , ξA = exp(−a/λ), ξH = 1/a2, and ξKc = q4|um(qx, qy)|2. The local
distance between membranes is denoted by a = um+1 (x, y) − um (x, y) + ā, while the
bars denote averages over (m,x, y) or (m, qx, qy). V = L2Mā is the membrane stack’s
volume.
Separating λ from (u, ā) in δG turned out to be impossible, but we were able to

calculate gradients of dW and ∆ with respect to λ efficiently. Because dW and ∆ did
not depend explicitly on λ (i.e. ∂f/∂λ = 0), differentiating Eq. (S2) yielded,

∂〈f〉λ′

∂λ′

∣∣∣∣
λ′=λ

= − AV

kTN2Ω
(∑

f(u, ā)ξλ − 〈f〉λ
∑

ξλ
)
, (S4)

where sums extend over all realized states, Ω denotes the collection length and

ξλ =
(

1 + a

λ

)
exp

(
−a
λ

)
. (S5)

Up to first order, 〈f〉λ′ was then determined from 〈f〉λ′ ≈ 〈f〉λ + (λ′ − λ) ∂〈f〉/∂λ.
Thus, for any observable f ∈ {dW ,∆} and parameter Λ ∈ {P,A,H,Kc, λ}, we first

determined 〈f〉1,2(N) for Λ1,2 = Λ±δΛ as detailed above, extrapolated these expectation
values for N → ∞ according to section S2, and finally calculated the finite difference
quotient ∂〈f〉/∂Λ ≈ (〈f〉1 − 〈f〉2)/2δΛ. Relative finite differences were set to δΛ/Λ =
0.03.
We checked this method against direct numerical differentiation for a couple of rea-

sonable parameters. Errors were always sufficiently small (well below 50%) to lead the
optimization routine towards a global minimum (see the section Optimizing parameters
against experimental data of the main text).

S4 Results for a homogeneous control sample
We tested our analysis on already published SAXS data for homogeneous DMPC MLVs
determined at 30 ◦C.16 The Lifshitz calculation of the van der Waals forces yielded a
value of H = 4.11 zJ for the published bilayer thickness of 44.0Å. The obtained values
describing the intersurface forces are given in Tab. S1, while Fig. S2 compares the sim-
ulations with the experimental data. Reassuringly, the simulations fit the experimental
osmotic pressure data well. While the fit to ∆ is excellent for high hydration, the fit
becomes relatively poor for ∆ as dW becomes small, similarly to our Lo sample and
likely for the same reason given in the main text.
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The interaction parameters obtained from the fit are shown in Tab. S1. Literature
values for DMPC’s bending modulus range from 50–130 zJ at 30 ◦C.18 In light of this
large variation, comparing only results of related methods is appropriate. Ref. 16 could
not determine Kc and the modulus B separately and therefore considered several values
of Kc; two of these are shown in Tab. S1. The values of A agree very well with ours.
The larger values of λ would have been smaller if the true value of KA had been known
at that time. Two differences from the previous analyses are that here we calculated
H and we used simulations; these cause the main differences reflected in the pairs of
values for H and Kc in Tab. S1. Table S1 also shows results from another study,19 that
employed the same kind of simulations used here and differed by obtaining X-ray data
from oriented stacks of DMPC bilayers, from which Kc was obtained directly. It also
used the same P data, but failed to readjust the A and λ values to account for the
corrected KA. Nevertheless, agreement is reasonable.

Table S1: Optimal parameters found for describing the DMPC data published in Ref.
16.

Current 1998a16 1998b16 200519
H/zJ 4.11 7.13 4.91 6.1
Kc/zJ 57± 5 50 80 69
A/Pa 108.1± 0.2 108.1 108.1 108.1

λ/Å 1.66± 0.15 1.91 1.97 1.91

For completeness, the functional dependence of the individual fundamental surface
forces for DMPC is plotted in Fig. S3. The fluctuation force becomes the dominant
repulsive force when dW exceeds 9Å, intermediate between the values of the Ld and
Lo phases in Fig. 7, suggesting that the DMPC bilayer fluctuations are intermediate
in this regard between the more fluid Ld phase and the more ordered Lo phase in the
studied mixture. This is consistent with the Ld phase having a high concentration of
the more disordered unsaturated lipids and the Lo phase having longer saturated chains
with cholesterol.

S5 SAXS analysis
Comparisons between full q-range SAXS analyses and experimental data are shown in
Fig. S4. Deviations between data and fits, especially for higher q ranges, are due to
imperfect background subtraction, as explained in the section X-ray measurements in
the main text.
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Figure S4: Calculated scattering intensities (solid lines) from full q-range analy-
ses, compared to recorded SAXS data from coexisting phases (dots) of
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S6 Fluctuations of the interbilayer water spacing
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