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Abstract

Recent simulations have indicated that the traditional Helfrich-Canham model for

topographical fluctuations in fluid phase biomembranes should be enriched to include

molecular tilt. Experimental evidence supporting the aforementioned enrichment is

reported. The current work is a tilt-dependent analysis of the X-ray scattering from

oriented stacks of fluid phase lipid bilayers. By analyzing several X-ray exposures

from different DOPC samples, final single membrane mechanical moduli values of

Kc = 8.4±0.6×10−13 ergs and Kθ = 90±7 mN/m are determined at 30 ◦C. The tilt-

dependent Kc-value is ∼20% greater than its tilt-independent analog, and therefore,

it compares more favorably with Kc-values reported for some of the other experimen-

tal techniques as well as values determined from molecular dynamics simulations. The

experimentally determined Kθ-value is between 10 and 20% greater than values re-

ported from molecular dynamics simulations, more consistent than the corresponding

Kc-values. As of yet, there is no other experimental technique that has determined

the value of Kθ. The determined tilt-dependent and tilt-independent form factors are

consistent, but the interpretation of the form factor within the tilt-dependent and

-independent models is not identical.

First, a tilt-dependent stacked bilayer free energy functional is hypothesized, based

on a recent single membrane tilt-dependent free energy. Then, a tilt-dependent

stacked bilayer electron density is posited, and a novel form factor / structure fac-

tor separation is derived. The height-height correlation function remains the most

important statistical quantity for predicting the X-ray scattering from stacked bi-

layers. The tilt-dependent height-height correlation function is derived as well as

an approximate analytic form for long in-plane length scales. Importantly, both the

tilt-dependent and tilt-independent analytic approximations logarithmicly diverge for

increasing in-plane length scales; both theories predict quasi-long range order of the

height-height correlations. The theoretically predicted intensity is modified by several

sample concerns including domain sizes and mosaicity and several experimental issues

such as X-ray beam coherence, geometric broadening, and absorption of the incident

and scattered X-rays. Measured scattering intensity from stacked DOPC bilayers

are analyzed using both tilt-dependent and -independent models. The tilt-dependent

model is shown to better account for the measurements, supporting the extension of

the classic Helfrich-Canham model to include a tilt degree of freedom.
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and S = 365 mm. The triangular (ω, pz)-region patterned with red

diagonal lines is not experimentally accessible because the substrate

blocks the outgoing scattering. The cyan line indicates the pz position

of the specular scattering as a function of ω. . . . . . . . . . . . . . . 98

5.13 q‡z(300, pz, ω) Eq. (5.130) is plotted for λ = 1.17 Å, ps = 0.07113
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dashed-dotted line indicates the typical smallest analyzed qx-value, see
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7.1 The background subtracted scattering intensity from a stack of DOPC

bilayers is shown. Intensity is expressed by a linear grayscale except

that red pixels indicate intensity less than zero and white indicates

intensity greater than 200. The predicted theoretical intensity is com-

pared to the measured data within either the two cyan dashed rectan-

gles or within the solid magenta rectangle. σ2
back is the mean square

intensity within the yellow rectangle where the mean is essentially zero.

The green circles show the positions of the Caillé peaks for D = 63.8 Å.136

7.2 Measured data and tilt-dependent and -independent fits are plotted
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offset to improve visibility. Note, due to the logarithmic vertical axis,

negative intensity values are not plotted. . . . . . . . . . . . . . . . . 138
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dashed-dotted gray line is a guide to the eye. . . . . . . . . . . . . . . 139
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Gaussian fits to the distributions, and Table 7.5 summarizes the fitted

parameter values. The distributions have been normalized by the fitted

Gaussian amplitudes. Representative error bars for fitted Li are the

square root of the number of pixels whose R-value is within a given

R-bin of size 0.1. The dashed-dotted gray lines are guides to the eye. 145

7.9 Scaled residuals R of tilt-dependent model fit for qx, qz-region within

the magenta rectangle in Fig. 7.1. . . . . . . . . . . . . . . . . . . . . 147

7.10 Measured data and tilt-dependent and -independent model fits are

plotted as functions of qx, after averaging 0.41 ≤ qz ≤ 0.47 Å−1. Rep-
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Chapter 1

Introduction

Preliminary Remarks

The current work combines theoretical results and experimental techniques to study

the mechanical moduli and the structure of lipid bilayers. In part, this thesis is mo-

tivated by recently reported inconsistencies between height spectra determined from

molecular dynamics (MD) simulations [1] and the prediction of the Helfrich-Canham

model, see Section 1.1. These recent results instigated a series of theoretical exten-

sions and reformulations of the lipid membrane free energy functional. A new single

membrane free energy model is only one of several necessary elements in the present

work since the studied experimental system is a stack of lipid bilayers. The stacked

bilayers are described by a theory originally from smectic liquid crystal literature, see

Section 1.2. Finally in Section 1.3, the thesis is briefly summarized, and aspects of

particular Chapters are emphasized.

1.1 Fluid Phase Lipid Bilayers

The studied system is a stack of fluid phase lipid bilayers, where fluid describes the

short range fluid-like in-plane correlations of the lipid molecules [2, 3]. A lipid is com-

posed of a hydrophilic headgroup and typically two hydrophobic fatty acid chains. In

water, lipids self-assemble into spatially ordered two- or three-dimensional structures,

depending on the specific lipid molecule, temperature, and concentration [4]. This

thesis is concerned with the class of lipids that spontaneously form bilayers in which

the hydrophilic headgroups shield the hydrophobic acyl tails from the surrounding

1
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water [5].

The fluid phase is often considered the most biologically relevant lipid bilayer

phase since the majority of lipids in plasma and organelle membranes are in a fluid

phase [6]. Single and many-component lipid bilayers are used as model biological

membranes for various structural and chemical assays since they constitute the fun-

damental structure in which other biomolecules reside [7]. However, lipids comprise

only a modest fraction of the molecular composition of typical biological membranes.

The rest of the biological membrane is primarily composed of proteins and carbohy-

drates.

From a purely physical perspective, stacked lipid bilayers are an interesting model

system to investigate various types of correlations. This is the perspective that most

intimately connects with liquid crystal literature, see Section 1.2. The correlations

in stacked bilayers are anisotropic. Perpendicular to the membrane planes, there is

a characteristic repeat spacing, reminiscent of a one-dimensional crystal; however, as

mentioned previously, the in-plane correlations are fluid-like. Additionally, the aspect

ratio of a single membrane is very large; they are typically about 4.5 nm thick and

can be larger than 100s of µm in lateral extent. Consequently, a single membrane is

quasi-two-dimensional, having many in a confined volume leads to stacking order.

This thesis primarily focuses on the mechanical properties of lipid bilayers. Many

biological processes involve changes to membrane topography [8, 9]. The energy

required to deform a nominally flat membrane has traditionally been quantified by the

Helfrich-Canham (HC) model [10, 11]. This is a continuum model which essentially

treats the membrane as a deformable plate without internal structure [12]. For a

tensionless, symmetric bilayer with fixed topology and no boundary, the only material

descriptor in the model is the bending modulus Kc. Since this level of description

is appropriate for many aspects of biomembrane mechanics [13], quantifying Kc has

been the purpose of many experiments [14, 15, 16, 17].

Of lesser importance to the current work, but nonetheless integral, is the structure

of lipid bilayers. The mechanical and structural attributes of the stacked bilayers

are coupled. Therefore, lipid bilayer structure is also discussed, see in particular

Sections 3.2.1 and 7.5.
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1.1.1 Motivation to Extend Helfrich-Canham Model

For length scales shorter than several membrane thicknesses, many simulations [18,

19, 20, 21, 1, 22, 23, 24] have reported significant deviations from the HC model,

most pertinently in the measured height-height fluctuation spectrum. At first, the

differences were attributed to molecular protrusion modes [18, 19, 20]. By considering

a free energy that includes molecular tilt with a corresponding material property,

the tilt modulus Kθ, systematic deviations from HC model predictions have been

derived [21, 1, 24], and estimates of Kθ have been reported from simulations [21, 22,

1, 23, 25, 24]. Using the so-called “direct Fourier method”, the height spectrum from

an MD simulation was originally reported to be inconsistent with the tilt-dependent

spectrum [26]; however, the direct Fourier method was later shown to be flawed [27].

Additionally, the height spectrum has been derived from recent membrane models

that explicitly include both tilt and protrusion contributions [1]. The derived height

spectrum was compared to the height spectrum determined from MD simulations,

and it was shown that the protrusion contribution is negligible [1]. 1

Earlier, molecular tilt was invoked to discuss orientational order in vesicles [28] and

to try to explain the origin of the ripple phase [29]. Additionally, a tilt contribution

to the membrane free energy was investigated as an example of an internal degree of

freedom [10] and later was invoked to explain inverted amphiphilic mesophases [30], as

well as fluid membranes [31]. Interestingly in seminal work [10], Helfrich considered

molecular tilt and an associated energetic penalty for nonzero tilt mediated by a

modulus Kt. Helfrich predicted that Kt ≈ KA [10], and therefore, he argued that “tilt

should be minute and its elastic energy negligible in most practical cases [. . . ], so i[t]

appears pointless to develop a detailed molecular theory.” For typical modern values

of KA ≈ 2.5×10−19 J/nm2 and Kt = Kθ ≈ 1×10−19 J/nm2, Kθ ≈ KA/2.5. Therefore,

the tilt degree of freedom contributes somewhat more to membrane energetics than

Helfrich posited.

The tilt m of a lipid molecule is quantified by the deviation of the director n of

the molecule from the normal N to the monolayer surface,

1Interestingly, the reported tilt and protrusion dependent model is still inconsistent with the
height spectrum determined from MD simulations for large wavevectors (short in-plane length
scales) [1].
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n
N

m
Figure 1.1: A cartoon of a lipid is shown with labeled vectors illustrating the definition
of tilt m Eq. (1.1). The blue dashed line indicates the surface dividing the headgroup
from the hydrocarbon tails.

m =
n

n ·N
−N, (1.1)

where n and N are unit vectors [28]. Eq. (1.1) is depicted in Fig. 1.1. By definition

m always points tangent to the local membrane plane (m ·N = 0). More recently,

other researchers have considered the ramifications of tilt on the spectra of simulated

fluid lipid membranes [21, 22, 1, 24].

The inclusion of tilt-dependent terms in the single membrane free energy model is

a fundamental modification to the HC model. As tilt is defined for each molecule, this

modification asserts the importance of internal degrees of freedom on membrane me-

chanics. A tilt degree of freedom has previously been claimed to significantly influence

inter-lipid, intermembrane, and membrane-protein interactions (see the introduction

of [1] for a succinct review). For many decades, the HC model has been the touchstone

for both theoretical and experimental membrane related research. Consequently, the

relatively recent tilt-dependent models should motivate new and exciting future work.

This thesis is one such tilt-dependent development. The first experimental support for

the addition of tilt to the HC model to describe the fluid lamellar phase was recently

reported [32]. This thesis is a further refinement of the previously published Letter

and discusses many details regarding both the experimental procedure and analysis.
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1.2 X-ray Scattering Methodologies and Analyses

The current X-ray scattering experimental methodology is an extension of a procedure

designed to study smectic liquid crystals (LC). A smectic LC is a layered structure

which is characterized by positional order perpendicular to the layer planes and fluid-

like order within the planes. Structural studies of stacked lipid bilayers significantly

predate the establishment of stacked bilayers as smectic LCs. Therefore, not un-

til more recently (late 1980s) were smectic theoretical and experimental techniques

leveraged in stacked bilayer studies to significant effect.

To study the structure of lipid bilayers, many researchers have used X-ray exper-

imental procedures and associated analyses inspired by crystallographic techniques

(at first not LC influenced) [33, 3]. In order to observe out-of-plane peaks, scattering

from stacks of lipid bilayers is measured. Commonly, multilamellar vesicles are stud-

ied; less often, oriented bilayer stacks. The out-of-plane peak position and intensity

are analyzed to determine out-of-plane membrane structure [34, 35]. Using the afore-

mentioned experimental procedure, the structural characterization of bilayers in the

most biologically relevant fluid phase is low resolution because very few out-of-plane

peaks are observed; the peak intensity decreases rapidly as a function of increasing

out-of-plane peak order. Eventually, it was appreciated that both short length scale

intermembrane fluctuations [35] and longer length scale height fluctuations [36, 37, 38]

reduce the number of observable scattering peaks [39].

In 1988-1989, stacked lipid bilayers were shown to be smectic LCs by measuring

the power-law tails from their X-ray scattering peaks [36, 37]. Specifically, stacks of

bilayers are classified as lyotropic smectic A (SA) LCs. “Lyotropic” indicates that the

bilayers form a LC only in a solvent (water). “A” indicates that the average molecular

director n is parallel to the average normal to membrane plane N. Since the lipids

are chiral, the stacked bilayers may be further categorized as (S∗A) [40]. The typical

smectic free energy includes two terms. One term describes interlayer interactions,

and the second term quantifies the energy required to bend a layer [40]. This second

term is equivalent to the HC model for a tensionless, symmetric single lipid bilayer

with fixed topology.

In previous foundational theoretical work [41], Caillé showed that the out-of-plane

X-ray scattering peaks from smectic LCs have long power-law tails because of the

quasi-long range order (QLRO) of the layers along the stacking direction [40]. Caillé’s
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prediction was experimentally supported in 1980 by measurements of the aforemen-

tioned power-law scattering peak tails [42]. Unlike classic crystallographic analyses

in which the positions and intensities of the Bragg peaks are the primary measured

quantities, the smectic LC analysis is concerned with the shape of the scattering

peaks. Importantly, the analysis of the power-law tails yields information regard-

ing the mechanical moduli of the studied smectic LC. 2 In the mid-1990s, a detailed

theory for the peak shapes of X-ray scattering from multilamellar lipid vesicles was

developed [38], following smectic LC theory [40], and utilized to show that correla-

tions within multilamellar lipid vesicles (MLVs) are better described by the smectic

LC theory than a paracrystalline theory [43].

With the advent of area detectors on X-ray scattering beamlines in the early 2000s,

the experimental emphasis on peak shape began to diminish. Using an area detector,

both the peak shape and surrounding diffuse scattering from stacked lipid bilayers are

measured concurrently, and it was observed that the diffuse scattering covers much

more of the area detector than the peak [44]. Several research groups took advantage

of area detectors and applied smectic LC theory to analyze diffuse X-ray scattering

from oriented stacked bilayers [44, 45, 46, 47]. The current experimental and analysis

methodology closely follows Liu and Nagle [46].

1.3 Brief Summary of Thesis Content

The current work is a detailed analysis of the X-ray scattering from oriented stacks of

lipid bilayers. In Chapter 2, the sample preparation and X-ray scattering methodology

are described. For the most part, experimental methods follow previous work [48];

however, significant improvements have been made with regard to subtraction of

background X-ray scattering, see Section 2.5. In Chapters 3 through 6, the detailed

analysis of the measured X-ray scattering from stacked lipid bilayers is developed.

While much of this parallels [44, 48], there are detailed differences in addition to the

inclusion of tilt. In Chapter 7, a single X-ray scattering exposure is analyzed using

several different fitting procedures. Finally in Chapter 8, many exposures from several

different stacked lipid bilayer samples are analyzed to determine final mechanical

moduli values and associated uncertainties.

2The value of the so-called Caillé η parameter is determined, where η is propotional to (KcB)−1/2,
see Section 3.3.3.
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Compared to Chapters 2, 7, and 8, Chapters 3 through 6 are more theoreti-

cally inclined. To appreciate the analysis of measured X-ray scattering described in

Chapters 7 and 8, only the details discussed in Chapter 3 are absolutely necessary,

specifically Sections 3.1 and 3.2. In Chapter 4, an analytic approximation to the

height-height correlation function is derived, and several related topics are discussed.

The theoretical scattering intensity derived in Section 3.2 is further developed in

Chapter 5, where several sample and experimental issues are considered. The ma-

jor result of Chapter 5 is a prediction for the measured X-ray scattering intensity

from stacked lipid bilayers for the particular experimental methodology detailed in

Section 2.4. Since the X-ray scattering prediction is quite complicated, several illu-

minating examples are given in Chapter 6, and it is established that the values of the

unknown model parameters (mostly mechanical moduli) can be plausibly determined

by fitting the measured X-ray scattering.

This thesis includes several Appendices. Appendix A provides details regarding

derivations in Chapter 3. In Appendix B, so-called Cartesian and cylindrical structure

factors, see Section 5.1, are compared, an important theoretical issue but not abso-

lutely necessary to understand the rest of the thesis. Since out-of-plane membrane

structure in this thesis is of secondary importance compared to membrane mechan-

ics, Appendix C provides details regarding the form factor, see Sections 3.2.2 and 7.5.

The effects of peristaltic modes on out-of-plane bilayer electron density are modeled,

see Section C.1, and the so-called undulation correction is defined and discussed, see

Section C.2. In Appendix D, several miscellaneous issues are discussed. Importantly,

an approximate analytic relation for the effect of the long wavevector cutoff on the

predicted scattering intensity, see Section D.1, and the fluctuation free energy per

unit area of a single bilayer, see Section D.4, are derived.

Appendices E and F discuss issues tangentially related to the primary focus of this

thesis. In Appendix E, an undulation correction is derived for the scattering from

unilamellar vesicles, a necessary result to quantitatively compare the determined vesi-

cle form factor and form factors measured by using other samples or techniques (for

example form factors from multilamellar samples or determined from molecular dy-

namics simulations). In Appendix F, several results are derived using a tilt-dependent

free energy in order to relate the tilt modulus to the order parameter describing lipid

acyl tail-tail correlations that is obtained by other techniques.



Chapter 2

Experimental Methods

The experimental methodology used in the present work mostly follows previously

described procedures [48, 49, 50]. Below, only the most significant aspects of the

X-ray scattering experiment and sample preparation are reviewed as well as recent

amendments and improvements. Most notably, a new background subtraction pro-

cess is discussed in Section 2.5. This is important for extracting the relatively weak

scattering intensity associated with the new tilt-dependent model that is the focus of

this thesis.

2.1 Oriented Samples

Oriented stacks of lipid bilayers were deposited using previously described tech-

niques [51]. Briefly, the lipids of interest were dissolved in a mixture of two organic

solvents and plated onto clean Silicon wafers. Importantly, the substrate was manu-

ally moved to coax the lipid solution to evenly coat the entire wafer during primary

evaporation of the solvent. Deposited samples were left in a fume hood for about 1

day and then in a vacuum oven for several hours to complete solvent evaporation.

For DOPC 3, 4 mg of lyophilized lipid is adequate to deposit about 2000 bilayers,

about 10 µm thick, given the 1.5× 3 cm Si substrate surface. Finally, stacked bilayer

samples were trimmed to final dimensions 0.5× 3 cm.

31,2-dioleoyl-sn-glycero-3-phosphatidylcholine

8
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2.2 Flightpath Components

2.2.1 X-ray optics

The synchrotron X-ray experiments were performed at the G1 station at the Cornell

High Energy Synchrotron Source (CHESS). A simplified schematic of the flightpath

setup is shown in Fig. 2.1. The G1 station is equipped with a W/B4C multilayer

monochromator producing a beam with an energy dispersion of about 1%. Before

2015, the multilayers were adjusted to reflect a beam with a mean energy of ∼10.5 keV

(1.18 Å). At the end of 2014, the wiggler feeding the G-line was replaced by a compact

undulator, and as a result a ∼11.2 keV (1.108 Å) beam was used in 2015, motivated

by the change in the white beam’s spectrum. Pairs of vertical and horizontal slits

were used to define an incident X-ray beam about 0.2 mm wide and 1 mm tall. 4 The

size of the beam was measured at several distances downstream of the final pair of

slits using an area detector and an attenuated beam. Typical divergence values were

0.5× 10−4 rad in the x-direction and 1× 10−4 rad in the z-direction.

detector

beam
stop sample

chamber

slits slits

393 cm

Figure 2.1: A simplified schematic of the flightpath is shown. Two pairs of horizon-
tal and vertical slits define the beam’s cross section. The Molybdenum beam stop
attenuates the direct beam and is placed close to the sample chamber (about 1 mm)
to block the detector from background scattering. The sizes and distances between
flightpath elements are not to scale.

4The tall beam ensures that the entire sample is always within the beam’s footprint for any angle
of incidence ω used.
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2.2.2 Beam Stop

The X-ray scattering of interest spans many orders of magnitude in intensity, but

the dynamic range of the detector is only from 1 to 65436. A Molybdenum semi-

transparent beam stop attenuates the scattering that would otherwise saturate the

detector. In particular, the beam stop is often positioned to attenuate both the direct

beam and intense low order out-of-plane peaks from a stacked bilayer sample, see the

left-hand side of Fig. 2.2 for a typical sample exposure. The semi-transparent beam

stop allows simultaneous assessment of sample scattering and the direct beam. The

measured intensities and nominal unattenuated intensities are summarized for several

common scattering features in Table 2.1. h is a whole number which indexes the out-

of-plane lamellar repeat peaks. Fig. 2.2 shows a view of the beam through the beam

stop, and typical beam profiles in the px- and pz-directions are plotted in Fig 2.3.
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200 400 600 800 1000

(a) (b)

px [pixels] px [pixels]

p z
[p

ix
el

s]

beam
h = 1
h = 2

3

Figure 2.2: DOPC sample and direct beam exposures are shown in (a) and (b),
respectively. The attenuated direct beam is visible through the beam stop centered at
about (490, 75). Intensity is indicated by the linear grayscale where white corresponds
to most intense. The dark rectangular feature in the lower left corner is the shadow
of the beam stop. The bright feature to the right of the beam stop shadow is the
beam’s splash. The beam and several out-of-plane orders are identified by the cyan
text.

2.2.3 CCD Detector

A charged-coupled device (CCD) detector “Flicam” (Finger Lakes Instrumentation,

Lima, NY) with 1024 × 1024 pixels and 0.07113 mm/pixel size was used at the G1-
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Table 2.1: Intensity of several common scattering features in panel (a) of Fig. 2.2

Feature
Measured Intensity Attenuation

Nominal Intensity
[×103] Factor

beam 11 69 ≈ 107 1× 1011

h = 1 17 64 ≈ 1.3× 103 2× 107

h = 2 4 1.3× 103 5× 106

between h = 3
2 1 2× 103

and h = 4

5 0 6 0 7 0 8 0 9 0 1 0 0
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

4 8 0 4 8 5 4 9 0 4 9 5 5 0 0 5 0 5
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Figure 2.3: The intensity of the beam through the beam stop, see panel (b) in Fig. 2.2,
is plotted as a function of pz (left-hand side) and px (right-hand side). Ideal beam
profiles are a boxcar and a Gaussian in the pz- and px-directions, respectively.

station. Typically, the detector was located such that the direct beam was incident

in the middle of the detector horizontally and about 100 pixels from the bottom,

see panel (b) in Fig. 2.2. Before analyzing the measured X-ray scattering, the CCD

exposure must be corrected for several known effects; zingers, CCD dark background,

and distortion and intensity corrections [52]. The aforementioned corrections were

performed by CHESS software at the G1-station.

2.3 Sample Chamber

During an X-ray scattering experiment, a stacked bilayer sample is housed within a

temperature controlled chamber [48], see Fig. 2.4. To moderate the sample temper-
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ature, a thermostatted bath circulates water through channels in the one inch thick

aluminum chamber walls. The chamber contains a reservoir of water, and typical

relative humidity after closing the chamber reaches 99.9%. Even so, 100% relative

humidity is often desirable to attain maximum repeat-spacing, and therefore, the sam-

ple is placed on top of a Peltier element which is fixed to a sample holder. Commonly,

the Peltier cools the sample relative to the water reservoir to increase the relative hu-

midity at the sample. The sample holder is mounted on the shaft of a rotation motor

which allows continuous rotation of the sample during typical data collection. The

incident and scattered X-rays enter and exit the sample chamber through pairs of my-

lar windows. Typically, air in the hydration chamber and entrance and exit windows

is replaced with Helium to reduce X-ray scattering from gas.

motor
shaft

entrance
window

exit
window su

bs
tr
at
e

He

He

m
yl
ar

He

mm

mm

Figure 2.4: A top view of the sample chamber is shown. Substrate and chamber
dimensions are drawn to scale. The dash-dot lines are the 1.5-6 µm thick mylar
windows. The blue arrows indicate entrance and exit holes for He. The X-rays
propagate from right to left.
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2.4 Low Angle X-ray Scattering

The current procedure for Low Angle X-ray Scattering (LAXS) experiments closely

follows the original methodology [48]. During a LAXS exposure, the angle be-

tween the sample and direct beam ω, is continuously varied by rotating the sample,

−ωmin ≤ ω ≤ ωmax. When rotating, the magnitude of the sample’s angular velocity

|α| is assumed to be constant, and Fig. 2.5 shows a simplified ω as a function of the

oscillation period ω(t). ωmin and ωmax are chosen to ensure that the sample is moving

at a constant angular speed while the sample scattering intensity incident on the de-

tector is nonzero. Typical values are ωmin = 1.6◦ and ωmax = 7◦ or 11◦. The sample

is rotated to a negative angle to block the beam from the sample while it accelerates.

The sample rotation speed and exposure time are chosen such that a large whole

number of oscillations are completed during a tens of seconds exposure. The sample

to detector distance is determined by the scattering of interest. For common lipids

and 10.5−11.2 keV X-rays, the detector is positioned about 370 mm from the sample

position, allowing an out-of-plane momentum transfer range of 0 . qz . 1 Å−1 to be

probed. Typical first order lamellar repeat scattering is centered at qz ≈ 0.1 Å−1, so

as many as 10 orders could be detected.

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 0

0

5

1 0

ω
[◦

]

τ

ωmin

ω∗

ωmax

t′

Figure 2.5: The simplified sample rotation as a function of time is plotted, where τ is
the cycle period. The acceleration before and after the angular velocity changes sign
have been neglected. Therefore, the cycle period is longer than the angular range
divided by the nominal angular speed (about 18.6◦/s).
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2.5 Background Subtraction

The intensity Im measured by the detector includes contributions from several sources

including the bilayers Ib, various vapors Ivap (helium, water, and air), the sample

chamber windows Iwin, and water between the bilayers IH2O,

Im(px, pz) ≡ Ib(px, pz) + Ivap(px, pz) + Iwin(px, pz) + IH2O(px, pz). (2.1)

Background scattering refers to the intensity from all sources besides the bilayers, and

only scattering from the direct beam will be quantitatively modeled. In Section 2.5.1,

a methodology for assessing and removing Ivap and Iwin is discussed. Section 2.5.2

describes the IH2O subtraction procedure.

2.5.1 Light Background

The combination of the scattering from vapor within the sample chamber Ivap and the

scattering from the sample chamber windows Iwin is referred to as the Light Back-

ground (LB). The LB measurement procedure is described for two types of X-ray

scattering experiments. During an exposure, the sample’s orientation with respect

to the beam is either fixed, a so-called fixed angle exposure, or more often contin-

uously rotated. First, the LB measurement procedure is described for a fixed angle

experiment. Since a continuously rotated sample experiment can be viewed as a se-

ries of fixed angle experiments, the rotated angle LB measurement procedure follows

conceptually from its fixed angle analog.

The beam-substrate geometry for a fixed angle exposure is shown in Fig. 2.6, where

ω is the angle between the substrate and the incident beam. Ivap and Iwin are each the

sum of scattering sources upstream and downstream of the sample. To approximately

measure Ivap + Iwin of a fixed angle exposure, an exposure in which ω is set to −ω
is recorded [53]. Importantly, the substrate is sufficiently thick such that for the −ω
condition no X-rays penetrate the substrate to scatter from the sample. Comparing

the ω and −ω setups, see Fig. 2.6, the amount of vapor along the beam path is nearly

the same except for the small volume above the sample, and the fraction of beam

passing through the sample chamber exit windows only depends on |ω|. Since the

beam path above the sample is small (∼ 15 mm) compared to the total beam path
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inside the sample chamber (128 mm), the −ω setup adequately approximates the LB

of an ω exposure. The volume of beam above the sample is always less than 12% of

the total beam volume in the sample chamber. The difference of ω and −ω exposures

is approximately Ib + IH2O.

upstreamdownstream

~1 mm

Figure 2.6: The beam-substrate geometry is shown for positive (left-hand side) and
negative (right-hand side) fixed incident angles ω. The red regions are the direct beam
which propagates from right to left. The sample, supporting substrate, and sample
holder are the green, dark gray, and light gray rectangles (not to scale), respectively.
The ω shown is much larger than ωmax.

During most LAXS exposures, the sample is rotated between fixed positive and

negative angles, −ωmin ≤ ω ≤ ωmax. In analogy to the fixed angle LB measurement

procedure, one might consider the rotation scheme, ωmin ≤ ω ≤ −ωmax, but then

for ω > 0, X-rays scatter from the sample. Therefore, the aforementioned scheme

does not isolate Ivap + Iwin. Instead, the LAXS LB is approximated by a fixed angle

LB where the fixed angle was chosen to mimic the LB originating downstream of

the sample. A fixed angle LB measurement intended to approximate the LAXS LB

will be referred to as a kludged Light Background (kLB). 5 Since the typical beam is

about 1 mm tall, the substrate will completely block the direct beam for an incident

angle ω∗, see the right-hand side of Fig. 2.6,

ω∗ = sin−1

(
bz
Ls

)
, (2.2)

where bz is the height of the beam and Ls is the width of the substrate. For ω > ω∗,

there will be no downstream direct beam to yield additional background scattering.

5Professor Nagle conceived the idea of a kLB.
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Considering the LB from scattering downstream (ds) of the sample, the average of

the incident angle ωds is calculated with the condition that ω > ω∗ are equivalent to

ω∗,

ωds =
2

τ

[∫ t′

0

dt |ω(t)|+
∫ τ/2

t′
dt ω∗

]
(2.3)

=
2

τ

[
ω2

min

α
+
αt
′2

2
− ωmint

′ + ω∗
(τ

2
− t′

)]
, (2.4)

where t′ ≡ (ωmin + ω∗) /α and τ is the time of one complete cycle, see Fig. 2.5. For

typical values of ωmin = 1.6◦, ω∗ = 3.8◦, α = 18.6◦/sec, and τ = 1.5 sec, ωds ≈ 2.9◦.

Experiments suggest that the kLB is not strongly dependent on the fixed angle chosen,

but it is dependent on the position of the sample chamber. A kLB is often measured

soon before or after its corresponding LAXS exposure because the LB is known to be

a function of many time dependent experimental conditions (beam intensity, vapors

in the sample chamber, motor positions, etc.)

Fig. 2.7 shows a typical 2015 sample exposure and the corresponding kLB with

ω = 2.8◦.6 In Fig. 2.7a part of the direct beam passes over the substrate, is attenuated

by the Mo beam stop, and is incident on the detector at approximately (490, 75).

Directly above the beam in Fig. 2.7a are the Mo attenuated (by 1300) first two out-

of-plane peaks, indicating a repeat distance of 63.8 Å. The beam stop shadow ends

at pz ≈ 300. In principal, the sample scattering should be left-right symmetric with

respect to the meridian at px ≈ 490. Fig. 2.7 emphasizes that much of the left-right

asymmetry of the sample exposure is due to LB scattering. The kLB subtracted

sample exposure is shown in Fig. 2.8 and is much more symmetric with respect to

px ≈ 490.

In the next section, the intensity visible in the upper corners of the detector in

Fig. 2.8 will be shown to be water scattering IH2O. Two methods to approximate

IH2O are summarized. First in Subsection 2.5.2, scattering from a water film on a Si

substrate is measured and compared to the residual scattering after kLB subtraction

shown in Fig. 2.8. The water film scattering and the residual intensity are shown

to differ systematically, see Fig. 2.11, and therefore in Subsection 2.5.2, the so-called

6The LB in 2015 was particularly strong because of gas scattering from the G1 flightpath (up-
stream of the sample). During experiments prior to 2015, great care was taken to minimize gas
scattering in the G1 flightpath. The kLB makes such efforts less necessary.
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Figure 2.7: DOPC sample exposure at 30 ◦C using Fig. 2.5 protocol (left-hand side)
and corresponding kLB (ω = 2.8◦; right-hand side) are shown, using the same linear
grayscale. Both the DOPC exposure and the kLB were rotated to align the substrate
normal and the pz-axis.
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Figure 2.8: The difference of the sample exposure and the kLB is depicted. Red
indicates negative values.

two box method is used to approximate IH2O. Finally, the background subtracted
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exposure using the two box method is shown in Fig. 2.13.
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2.5.2 Water Background

Scattering from Water Film

The scattering from the water between the bilayers IH2O can be approximated by a

water film on a Si wafer. 7 A clean Si wafer is placed on the sample holder. Then,

the sample chamber is closed and filled with He. Next, the target temperature of

the thermostatted water circulator is increased, commonly from 30 ◦C to 37 ◦C. A

heating element in the water circulator rapidly raises the temperature of the circu-

lating water and via conduction the water reservoir in the chamber. The substrate

temperature also increases but lags behind the temperature of the chamber water

reservoir. Within about 20 min, the substrate and water reservoir re-equilibrate to

the same temperature. In the meantime, the substrate is colder than the water vapor

so water condenses on the substrate. Fig. 2.9 shows typical detector exposures with-

out and with water, after subtracting a kLB. The sample was rotated continuously

between -1.6◦ and 11◦ during the exposures. Fig. 2.10 shows the kLB subtracted

water scattering as a function of time. The water scattering increases as the water

film thickness increases.

The water scattering visible in the right-hand side of Fig. 2.9 is qualitatively similar

to the residual scattering in the kLB subtracted DOPC exposure, see Fig. 2.8. The

amount of water between the bilayers and in the bulk water film are unlikely to be the

same. Therefore, the water scattering intensity is scaled by a multiplicative factor to

best mimic the residual scattering in a kLB subtracted bilayer stack exposure. The

difference of the scaled water scattering and a kLB subtracted DOPC exposure is

shown in Fig. 2.11. Even after the subtraction, there remains pz-dependent scattering

in regions of the detector where the intensity is expected to be distributed about 0.

Absorption of the scattered X-rays by the sample could yield a pz-dependent dif-

ference between the measured water scattering and the scattering from water between

the bilayers. The scattering at smaller pz are more strongly attenuated by the sample

as compared to scattering at higher pz. The aforementioned effect can be quantita-

tively determined if the thickness of the water sample is known, see Section 5.3.4.

Since the water film thickness is unknown, a different methodology is used to approx-

imate IH2O.

7Dr. Tristram-Nagle first suggested that IH2O be subtracted from LAXS expsoures after a kLB
subtraction.
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Figure 2.9: Exposures without (left-hand side) and with (right-hand side) a water
film on the Si substrate are shown using the same grayscale. Red indicates negative
values. The exposures were kLB subtracted and rotated such that the substrate
normal and the pz-axis are parallel. The vertical streak of intensity along px ≈ 490 is
the specular scattering from the Si wafer.

Two Box Method

The scattering from the water between the bilayers and any other residual scattering

is assumed to be of the form

I ′H2O(px, pz) ≡ A(pz) +B(pz)px + C(pz)p
2
x. (2.5)

A(pz), B(pz), and C(pz) are determined by a linear least squares fit using data sym-

metrically chosen with respect to the px beam center, see the green and blue boxes in

the left-hand side of Fig. 2.12. 8 The resulting I ′H2O(px, pz) is plotted on the right-hand

side of Fig. 2.12. The difference of I ′H2O(px, pz) and the kLB subtracted DOPC expo-

sure is shown in Fig. 2.13. Fig. 2.14 compares the two discussed water background

subtraction procedures; the remaining intensity after water background subtraction

is plotted as functions of pz, averaging over 710 ≤ px ≤ 730. Far from the bilayer

scattering, the intensity after I ′H2O subtraction is distributed about 0.

The background subtraction results are summarized in Fig. 2.15. Intensity as a

8The so-called two box method was implemented by Dr. Yufeng Liu as part of his graduate work
in the Nagle lab [48].
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Figure 2.10: The water scattering intensity is plotted as a function of pz, averaging
over 200 pixels in px centered at px = 850. ∆t is the approximate time after increasing
the target temperature of the water circulator. The black line shows the intensity of
the kLB subtracted DOPC exposure shown in Fig. 2.8 scaled to match the red line
at pz = 800.

function of pz and px highlight the effects of the kLB and I ′H2O subtractions. Before

background subtraction Im is asymmetric with respect to the meridian, px ≈ 490,

see panel (b) Fig. 2.15. Im − IkLB is considerably more symmetric, but far from

the meridian in the px-direction, the remaining intensity is nonzero. Additionally,

Im− IkLB increases as a function of pz due to IH2O, see panel (a) Fig. 2.15. Using the

two box method, I ′H2O is determined, and far from bilayer scattering, Im−IkLB−I ′H2O

is distributed about 0.
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Figure 2.11: The difference of the kLB subtracted DOPC exposure and kLB sub-
tracted water exposure is shown. Red indicates negative values.
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Figure 2.12: The intensity between the blue and green rectangles in (a) is used to
determine A(pz), B(pz), and C(pz), see I ′H2O Eq. (2.5). The resulting I ′H2O(px, pz) is
shown in (b).
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Figure 2.13: The difference of the kLB subtracted DOPC exposure and I ′H2O is shown.
Red indicates negative values.
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Figure 2.14: Comparing two different water background subtraction procedures, the
remaining intensity is plotted as function of pz, averaging over 710 ≤ px ≤ 730 in
Fig. 2.11 (blue squares) and in Fig. 2.13 (red circles). Im and IkLB are the total
measured and kLB intensities, respectively. The intensity after subtracting I ′H2O is
more symmetrically distributed about 0. The black dashed line is a guide to the eye.
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Figure 2.15: Intensity as a function of pz (700 ≤ px ≤ 740), panel (a), and px (395 ≤
pz ≤ 435), panel (b), are plotted at various stages in the background subtraction
procedure. Note, the measured intensity Im has been shifted down by 415 to facilitate
visual comparison with the background subtracted curves.
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Tilt-Dependent Membrane Model

Several researchers have postulated tilt-dependent membrane free energy function-

als [31, 1, 22, 28, 54]. The current work follows the model hypothesized by Watson

et al. [1]. Since the most significant thrust of the presented work is to appreciate

the effects of a tilt-dependent model on a previously established X-ray scattering

experimental methodology [44, 46], Section 3.1 presents the simplest tilt-dependent

membrane model which can be supported experimentally. For various other secondary

theoretical and experimental issues, the complete Watson et al. model [1] is invoked.

Using the tilt-dependent model forwarded in Section 3.1, we begin to derive the

theoretical X-ray scattering intensity from a bilayer stack. First in Section 3.2.1,

a tilt-dependent electron density profile is posited. Then, the theoretical scattering

intensity is decomposed into the sum of two terms in Section 3.2.2. Importantly, the

height-height correlation function is shown to be the most significant statistical quan-

tity in describing the predicted scattering. Finally, the height fluctuation spectrum

is determined and then used to evaluate the height-height correlation function, see

Sections 3.3.2 and 3.3.3, respectively.

3.1 Membrane Model Relevant to X-ray Scatter-

ing

Previously, measured low angle X-ray scattering (LAXS) from lipid bilayers [44, 46]

was compared to predictions derived using the discrete Smectic A model [55, 56,

57]. Neglecting the interlayer interaction term, the Smectic A model is equivalent to

25
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the Helfrich-Canham model [10, 11] for a tensionless, symmetric bilayer with fixed

topology. In the HC model, membrane shape is a function of only the height field.

The current work follows the model hypothesized by Watson et al. [1] in which the

bilayer free energy is a sum of so-called undulation modes (4 fields; 1 of which is

the height field) and peristaltic modes (3 fields). The undulation modes describe the

overall membrane shape, and the peristaltic modes characterize fluctuations in bilayer

thickness. Theoretically, fluctuations of all seven fields influence the LAXS from lipid

bilayers, yet prior analyses based on the HC model compared favorably with X-ray

measurements [44, 46], suggesting that there exists a hierarchy of the seven fields with

regard to their influence on scattering from bilayers. Therefore, instead of extending

the single field (HC) model to include all six new fields, the present work seeks to

establish the next most important field (after the height field) for the analysis of

LAXS from membranes.

In the Watson model [1], the height field is only coupled to other fields in the

description of the undulation modes. Therefore, the undulation modes are inferred to

be more significant for the analysis of membrane scattering than the peristaltic modes.

Still, the peristaltic modes are not entirely neglected; en masse, their influence on the

bilayer electron density is semi-quantitatively considered, see Sections 3.2.1 and 3.2.2.9

Further, the protrusion-dependent fields are neglected since they have been shown to

be unnecessary to explain simulation data [1]. Retaining only the undulation free

energy terms reduces the complete Watson model to the free energy functional FW

presented by Watson et al. in [22]. FW could be extended to describe a bilayer stack

F s
W, but anticipating later results, FW is first even further simplified.

F s
W is a complicated model which is limitedly probed by LAXS experiments. Im-

portantly, the predicted X-ray scattering from stacked lipid bilayers primarily depends

on the height spectrum, see Section 3.3.2. Therefore, F s
W is simplified to the minimal

model Fu that predicts an equivalent height spectrum. Besides reducing mathemati-

cal overhead, Fu makes clear the extent to which the presented experimental results

support a tilt-dependent theory. Additionally, the simplification eases comparison

with prior experimental work [44, 46, 55, 45].

For much of the current work, membrane fluctuations are described by only two

fields z+(r) and m̂(r) following the notation in [1], where r = (x, y) is the indepedent

9Specifically, the consideration of peristaltic fluctuations yields the second term (Ibf) in the
intensity decomposition I(q) ≡ Ic(q) + Ibf(q), see Eq. (3.32).
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in-plane variable. Fig. 3.1 shows a diagram of these fields. z+ is the average of

the surfaces z(α) dividing the headgroups and hydrocarbon tails of each monolayer,

z+(r) ≡ 1
2

[
z(1) + z(2)

]
, where the superscripts in parentheses indicate the upper (1)

or lower (2) leaflet, respectively. z+ is analogous to the mid-plane height field used

by Helfrich and Canham [10, 11] to describe membrane shape.

Figure 3.1: A diagram of the bilayer stack is labeled to illustrate various fluctuation
fields and definitions given in the text. The lighter colored region in the jth bilayer
is shown expanded in the figure’s right-hand side. D is the repeat distance in the
z-direction.

The second field m̂ describes the tilt of the membrane. Tilt is defined by

m(α) ≡ n(α)

n(α) ·N(α)
−N(α), (3.1)

where n(α) is the unit vector pointing from the headgroups towards the hydrocarbon

tails and N(α) is the unit vector normal to the headgroup/hydrocarbon interface,

pointing towards the interior of the membrane. Assuming that the angle between

n(α) and N(α) is sufficiently small, the xy-components of m is approximated as

m(α)
xy = n(α)

xy −N(α)
xy . (3.2)

Finally, a membrane tilt field is expressed in terms of the individual leaflet tilt fields,

m̂(r) ≡ 1
2

[
m

(1)
xy −m

(2)
xy

]
.

The simplified single membrane free energy functional is

Fs =
1

2

∫
Ap

d2r
[
Kc

(
∇2z+ + ∇ · m̂

)2
+Kθ|m̂|2

]
, (3.3)

where Ap is the area of the membrane projected onto the xy-plane. Fs Eq. (3.3)



Chapter 3. Tilt-Dependent Membrane Model 28

is a function of two membrane moduli; bending modulus Kc and tilt modulus Kθ,

and two fluctuation fields; z+(r) and m̂(r). The first and second terms account for

the bending and tilt energy of the membrane, respectively. To describe a membrane

stack, the fluctuation fields are written as functions of the stacked bilayer index j.

z+
j (r) describes the height fluctuations of the jth bilayer about z = jD, see Fig. 3.1.

Additionally, a term to describe interactions between adjacent membranes must be

included,

Fu =
1

2

∑
j

∫
Ap

d2r
[
Kc

(
∇2z+

j + ∇ · m̂j

)2
+Kθ|m̂j|2

+B
(
z+
j+1 − z+

j

)2
]
, (3.4)

where B is the bulk modulus. The intermembrane interaction term is expressed in

a discrete fashion to respect that the system is composed of well separated distinct

layers [56, 55, 57]. Fu Eq. (3.4) can be viewed as a tilt-dependent extension of a

discrete free energy functional previously utilized to describe X-ray scattering from

membrane stacks [58, 55, 57, 44, 46, 59, 60, 47], originally from liquid crystal lit-

erature [40]. The intermembrane interaction term in Fu Eq. (3.4) is conceptually

equivalent to the analogous term in the tilt-independent model.

3.2 Theoretical Scattering Intensity

The theoretical X-ray scattering intensity for a bilayer stack is derived. First, a

tilt-dependent electron density is posited, see ρj(r, z) Eq. (3.7). Using ρj(r, z) the

theoretical scattering intensity is decomposed into the sum of two terms, see Eq. (3.28)

for the final result.

3.2.1 Membrane Electron Density

In general, the X-ray scattering intensity from a sample is related to the sample’s

electron density ρ(R), where R = (x, y, z). Fig. 3.2 shows a tilt-independent rep-

resentation of a single bilayer. Previous work quantitatively considered membrane

electron density as a function of the bilayer midplane field z+
j [44, 46],
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Figure 3.2: A diagram of a single bilayer is labeled to describe the parameters in the
tilt-independent electron density, Eq. (3.5). As αb increases the membrane thickness
T projected on the z-axis increases.

ρ�
�tilt
j (r, z) = ρs

(
[z − jD − z+

j (r)] (−N · ẑ)
)

+ ρw(R) (3.5)

= ρs

(
[z − jD − z+

j (r)] cosαb
)

+ ρw(R), (3.6)

where ρs(r, z) is the electron density profile of a single bilayer centered at z = 0 with

normal in the z-direction and ρw(R) is the electron density of the water between

the bilayers. D is the bilayer stack repeat distance in the z-direction. Assuming

that ρw(R) is approximately a constant, it is neglected in later equations since it

only contributes to scattering at q = 0; this is known as the “minus fluid” conven-

tion [61]. −N · ẑ = cosαb is a geometric factor that accounts for deviations of the

local membrane normal N from the z-axis. For increasing αb the projection of the

membrane thickness along the z-axis increases [39, 48]. It was recognized that other

membrane fluctuations, such as thickness fluctuations, also influence ρ��tiltj (r, z) [38]

(see Appendix). It has been argued that so-called local fluctuations in lipid molecules

are included on average in ρ��tiltj (r, z), assuming that these local fluctuations are un-

correlated with z+
j [48].

Given the tilt-dependent free energy functional Fu Eq. (3.4), a tilt-dependent elec-

tron density is considered. Based on both the complete Watson et al. model [1] and

molecular dynamics simulations, Kopelevich and Nagle have shown that the length of
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Figure 3.3: A diagram of a single bilayer is labeled to describe the additional param-
eters in the tilt-dependent electron density, Eq. (3.7). As the angle between n(α) and
N(α) increases, the leaflet thickness T (α) projected on the z-axis decreases. Here N(α)

and ẑ are parallel for convenience, but generally, N(α) and ẑ are not parallel.

lipid chains are nearly uncorrelated with tilt which implies that the membrane thick-

ness along ẑ diminishes when n(α) and N(α) are not parallel [submitted manuscript].

The effect of tilt fluctuations on apparent membrane thickness is opposite to the ef-

fect of fluctuations in the local membrane normal. Fig. 3.3 depicts the tilt-dependent

characterization of a single bilayer which is quantified by

ρj(r, z) = ρs

([
z − jD − z+

j (r)
] −N

(1)
j · ẑ−N

(2)
j · ẑ

N
(1)
j · n

(1)
j + N

(2)
j · n

(2)
j

, Pj(r)

)
(3.7)

≡ ρs

( [
z − jD − z+

j (r)
]

Ψj(r), Pj(r)
)
, (3.8)

where N
(α)
j and n

(α)
j are the local leaflet normal and director, respectively. ρs is ex-

plicitly written as a function of a single effective peristaltic mode Pj(r); Pj does not

include protrusions. In [1], it is shown that protrusion modes have no spatial correla-

tions, and additionally, they are uncorrelated with undulation modes and peristaltic

modes. Therefore, ρs is interpreted to be inherently broadened in the z-direction by

protrusions modes. The so-defined Ψj(r) is a geometric factor due to fluctuations that

quantifies systematic deviations of the bilayer electron density along ẑ from ρs(r, z).

The numerator of Ψj is the extension of the single bilayer geometric factor when the

local normal of each monolayer is considered, and the denominator of Ψj accounts

for apparent thinning of each monolayer due to deviations of N(α) from n(α). The

jnagle
Sticky Note
J. Chem. Phys. 143, 154702 (2015)

jnagle
Sticky Note
This denominator should be omitted b/c it is intrinsic to the internal averaged bilayer structure, same as the protrusions and same as what is obtained from MD simulations. This omission makes a difference in Appendix C.2.
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electron density of a bilayer stack is then

ρ(R) =
∑
j

ρj(r, z). (3.9)

3.2.2 Separation of the Structure and Form Factors

The predicted X-ray scattering intensity is derived for a stack of fluid phase lipid

bilayers described by ρ(R) Eq. (3.9). Since the system is described within a continuum

approximation, it is unreasonable to expect that the stacked membrane free energy

functional Fu Eq. (3.4) accurately predicts scattering features known to be due to

short length scale phenomena (for instance the wide angle scattering peak centered

near q ∼1.4 Å−1 attributed to correlations between lipid acyl tails). Therefore, many

assumptions are made concerning the extent to which various fluctuation fields are

correlated over length scales consistent with the continuum approximation and probed

by the low angle X-ray scattering measurements (q . 1 Å−1).

In the Born approximation [62], the X-ray scattering intensity I and the sample’s

electron density ρ are related by

I(q) =

〈∣∣∣∣∫
V

d3R ρ(R)eiq·R
∣∣∣∣2
〉
, (3.10)

where V is the sample volume illuminated by the X-ray beam. The angle brackets

correspond to a time-average over the measurement period. Assuming ergodicity,

later angle brackets denote ensemble averages unless otherwise noted.

Combining ρ(R) Eq. (3.9) and I(q) Eq. (3.10), the relation for the scattering

intensity is rewritten,

I(q) =

〈∫ ∫
d3R d3R′ eiq·(R−R

′)
∑
j,j′

ρj(r, z)ρj′(r
′, z′)

〉
. (3.11)

Following the common procedure for molecular liquids, see for example pp. 127 [62],

the double sum in Eq. (3.11) is decomposed into a sum over j = j′ and a sum over

j 6= j′,
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I(q) =

〈∫ ∫
d3R d3R′ eiq·(R−R

′)
∑
j

ρj(r, z)ρj(r
′, z′)

〉
+〈∫ ∫

d3R d3R′ eiq·(R−R
′)
∑
j 6=j′

ρj(r, z)ρj′(r
′, z′)

〉
(3.12)

= Ij(q) + Ij,j′(q). (3.13)

The sum is decomposed into j = j′ (intramembrane correlations) and j 6= j′ (in-

termembrane correlations) in anticipation of treating these two types of correlations

differently. Rewriting Ij using ρj(r, j) Eq. (3.7) and making the substitution

z̃ =
[
z − jD − z+

j (r)
]

Ψj(r), (3.14)

Ij(q)

=
∑
j

∫ ∫
d2r d2r′ eiqr·(r−r′)·〈∫ D

2
+jD+z+

j (r)

−D
2

+jD+z+
j (r)

∫ D
2

+jD+z+
j (r′)

−D
2

+jD+z+
j (r′)

dz dz′ eiqz[z
+
j (r)−z+

j (r′)]ρj(r, z)ρj(r
′, z′)

〉
(3.15)

=
∑
j

∫ ∫
d2r d2r′ eiqr·(r−r′)·〈∫ D

2
Ψj(r)

−D
2

Ψj(r)

∫ D
2

Ψj(r
′)

−D
2

Ψj(r′)

dz̃ dz̃′ eiqz[z
+
j (r)−z+

j (r′)]ρs[z̃, Pj(r)]ρs[z̃
′, Pj(r

′)]

Ψj(r)Ψj(r′)
e
iqz

(
z̃

Ψj(r)
− z̃′

Ψj(r′)

)〉
.

(3.16)

Within the “minus fluid” convention, the electron density between the bilayers is zero.

Assuming that Ψj does not modify the integration limits too much, D
2

Ψj(r) ≈ D
2

, and

Eq. (3.16) is expressed as
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Ij(q) ≈ Ia
j (q) ≡

∑
j

∫ ∫
d2r d2r′ eiqr·(r−r′)

〈
eiqz[z

+
j (r)−z+

j (r′)]Fj(r, qz)Fj(r
′, qz)

〉
,

(3.17)

where F is called the form factor,

Fj(r, qz) ≡
∫ D/2

−D/2
dz̃

ρs[z̃, Pj(r)]

Ψj(r)
exp {iqz z̃/Ψj(r)} . (3.18)

The stacked bilayers are assumed to be translationally invariant along the stacking

direction
[
z+
j (r)− z+

j (r′)
]
→
[
z+

0 (r)− z+
0 (r′)

]
, Fj(r, qz) → F0(r, qz), and Pj(r) →

P0(r). The variance of Ψ0(r) is shown to be small in Appendix A.2.2. Therefore

ψ0(r)→ 〈ψ0〉 and

F0(r, qz) ≈
∫ D/2

−D/2
dz̃

ρs[z̃, P0(r)]

〈Ψ0〉
exp {iqz z̃/ 〈Ψ0〉} . (3.19)

Then, Ia
j Eq. (3.17) is further simplified assuming that the peristaltic fluctuations

P0(r) of ρs are uncorrelated with z+
0 over long length scales,

Ia
j (q) ≈ Ib

j (q) ≡
∑
j

∫ ∫
d2r d2r′ eiqr·(r−r′)

〈
eiqz[z

+
0 (r)−z+

0 (r′)]
〉 〈
|F0(r, qz)|2

〉
. (3.20)

Moving on to rewrite Ij,j′ , see Eq. (3.13), and making the substitution

z̃ =
[
z − jD − z+

j (r)
]
〈Ψj(r)〉,

Ij,j′(q) =

∫ ∫
d3R d3R′ ·〈

eiqr·(r−r′)
∑
j 6=j′

e
iqz

[
z̃

〈Ψj(r)〉−
z̃′

〈Ψj′ (r′)〉
+(j−j′)D+z+

j (r)−z+
j′ (r
′)

]
ρs[z̃, Pj(r)]ρs[z̃

′, Pj′(r
′)]

〈Ψj(r)〉 〈Ψj′(r′)〉

〉
.

(3.21)

Electron density fluctuations due to peristaltic modes Pj(r) are assumed to be suffi-

ciently uncorrelated between different bilayers,
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〈
ρs[z̃, Pj(r)]ρs[z̃

′, Pj′(r
′)]
〉
→
〈
ρs[z̃, Pj(r)]

〉〈
ρs[z̃

′, Pj′(r
′)]
〉
. (3.22)

Invoking translational invariance in the z-direction and using F0(r, qz) Eq. (3.19),

Ij,j′(q) ≈ Ia
j,j′(q) (3.23)

≡
∑
j 6=j′

∫ ∫
d2r d2r′ eiqr·(r−r′)+iqzD(j−j′)

〈
e
iqz
[
z+
j (r)−z+

j′ (r
′)
]〉 ∣∣〈F0(r, qz)〉

∣∣2,
(3.24)

again using the assumption that Pj is uncorrelated with z+
j over long length scales.

Substituting Ib
j Eq. (3.20) and Ia

j,j′ Eq. (3.24) into I(q) Eq. (3.13),

I(q) ≈
∑
j

∫ ∫
d2r d2r′ eiqr·(r−r′)

〈
eiqz[z

+
0 (r)−z+

0 (r′)]
〉 〈
|F0(r, qz)|2

〉
+

∑
j 6=j′

∫ ∫
d2r d2r′ eiqr·(r−r′)+iqzD(j−j′)

〈
e
iqz
[
z+
j (r)−z+

j′ (r
′)
]〉 ∣∣〈F0(r, qz)〉

∣∣2. (3.25)

Adding and subtracting the term,

∑
j

∫ ∫
d2r d2r′ eiqr·(r−r′)

〈
eiqz[z

+
0 (r)−z+

0 (r′)]
〉 ∣∣〈F0(r, qz)〉

∣∣2, (3.26)

from I(q) Eq. (3.25) and grouping like terms,

I(q) ≈
∑
j

∫ ∫
d2r d2r′ eiqr·(r−r′)

〈
eiqz[z

+
0 (r)−z+

0 (r′)]
〉 [〈
|F0(r, qz)|2

〉
−
∣∣〈F0(r, qz)〉

∣∣2]
+
∑
j,j′

∫ ∫
d2r d2r′ eiqr·(r−r′)+iqzD(j−j′)

〈
e
iqz
[
z+
j (r)−z+

j′ (r
′)
]〉 ∣∣〈F0(r, qz)〉

∣∣2. (3.27)

For sufficiently small length scales, fluctuations in F0(r, qz) are known to be signifi-

cantly correlated; a scattering peak due to correlations between acyl tails is observed

at qr ∼1.4 Å−1 [3, 2, 53]. The current analysis focuses on qr < 0.3 Å−1. Enforc-

ing liquid-like short range order by assuming that the fluctuations in F0(r, qz) are
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uncorrelated over long length scales, I(q) Eq. (3.27) is further simplified to

I(q) ≈
[〈
|F0(r, qz)|2

〉
−
∣∣∣〈F0(r, qz)〉

∣∣∣2]S0(q) +
∣∣∣〈F0(r, qz)〉

∣∣∣2 S(q) (3.28)

where indicates an in-plane spatial average,

f(r, qz) =
1

A

∫
A

d2r f(r, qz). (3.29)

We call

S(q) ≡
∑
j,j′

∫ ∫
d2r d2r′ eiqz(j−j′)D+iqr·(r−r′)

〈
e
iqz
[
z+
j (r)−z+

j′ (r
′)
]〉

(3.30)

the structure factor of the stack, and

S0(q) ≡
∑
j

∫ ∫
d2r d2r′ eiqr·(r−r′)

〈
eiqz[z

+
0 (r)−z+

0 (r′)]
〉
. (3.31)

is the structure factor describing the fluctuations of single bilayers within the stack.

For later notational convenience, I(q) Eq. (3.28) is defined as

I(q) ≡ Ic(q) + Ibf(q), (3.32)

where the “common” (c) intensity is

Ic ≡ |F (qz)|2 S(q) (3.33)

and

F (qz) ≡ 〈F0(r, qz)〉. (3.34)

F (qz) is referred to as the form factor following many previous researchers [44, 46, 38].

The intensity due to single “bilayer fluctuations” (bf) is
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Ibf(q) ≡ F∆(qz)S0(q), (3.35)

where

F∆(qz) ≡
[〈
|F0(r, qz)|2

〉
−
∣∣∣〈F0(r, qz)〉

∣∣∣2] . (3.36)

Commonly, only Ic has been used to quantitatively describe the measured scatter-

ing from stacked lipid bilayers [44, 46, 38, 47, 55, 45]. The term describing internal bi-

layer fluctuations Ibf(q) ≡ F∆(qz)S0(q) is unique to the present work. Expressing the

scattering intensity as a sum of two terms is routine for liquid-like samples [62, 63, 64].

Previously, a relation similar to Eq. (3.28) was suggested in the Appendix of [38] to

describe the scattering from stacked lipid bilayers. Closely following Guinier [65] (see

pp. 52-53), it was argued that the term I ′bf = JF∆(qz), where J is the number of lay-

ers, predicts broad diffuse scattering that could be nonnegligible far from the lamellar

peaks.

S(q) in Eq. (3.30) and S0(q) in Eq. (3.31) can be further simplified if
[
z+
j (r) −

z+
j′ (r

′)
]

is assumed to be normally distributed [66]. Deviations from normality have

been studied by Monte Carlo simulations [67]. Assuming normality,

S(q) =
∑
j,j′

∫ ∫
d2r d2r′ eiqz(j−j′)D+iqr·(r−r′)e

− q
2
z
2

〈[
z+
j (r)−z+

j′ (r
′)
]2〉

(3.37)

and

S0(q) =
∑
j

∫ ∫
d2r d2r′ eiqr·(r−r′)e

− q
2
z
2

〈
[z+

0 (r)−z+
0 (r′)]

2
〉
, (3.38)

where
〈[
z+
j (r)− z+

j′ (r
′)
]2〉

is the height-height correlation function, the critical sta-

tistical quantity in the predicted X-ray scattering intensity. The structure factors

S(q) and S0(q) are the principal focus of this thesis. Since S(q) and S0(q) are func-

tions of an ensemble average involving z+
j , the necessary statistical predictions of the
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previously presented free energy functional Fu Eq. (3.4) are derived.

3.3 Determining Statistical Quantities

Within Section 3.3, the previously introduced membrane free energy functional Fu

Eq. (3.4) is reexpressed in Fourier space. Then, the tilt-dependent height fluctuation

spectrum (Section 3.3.2) and height-height correlation function (Section 3.3.3) are

derived.

3.3.1 Free energy in Fourier Space

For completeness, the membrane free energy Fu Eq. (3.4) is reproduced,

Fu =
1

2

∑
j

∫
Ap

d2r
[
Kc

(
∇2z+

j + ∇ · m̂j

)2
+Kθ|m̂j|2

+B
(
z+
j+1 − z+

j

)2
]
. (3.39)

Since Fu Eq. (3.39) is classical and harmonic, the fluctuations are Fourier analyzed

into normal modes. Assuming periodic boundary conditions both in- and out-of-plane,

the fluctuation variables are written in terms of Fourier sums. Fourier transforms of

the bilayer fluctuation fields are defined by

gQ ≡
1√
ApJ

∫
d2r

∑
j

gj(r)eiQr·r+iQzjD (3.40)

gj(r) ≡ 1√
ApJ

∑
Q

gQe
iQr·r+iQzjD, (3.41)

where g stands for any one of the fluctuation fields, Ap is the area of the membrane

projection onto the xy-plane, and J is the total number of bilayers in the stack.

Throughout the thesis Q is reserved for the Fourier space of the fluctuations while q

describes the scattering Fourier space. 10

Boundary conditions besides periodic ones have been explored [59, 57, 68, 69, 70].

10q is also known as the wavevector transfer or the scattering vector.
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For sufficiently large samples, different boundary conditions only primarily influence

fluctuations on long length scales similar to the sample size. The current X-ray

scattering experiments only probe fluctuations on length scales much shorter than

the sample size.11 Therefore, the boundary conditions most amenable to analytic

calculations are used.

Following [1], the tilt field m̂(r) is decomposed into longitudinal m̂
‖
j(r) and trans-

verse m̂⊥j (r) components. In Fourier space, the longitudinal and transverse compo-

nents are

m̂
‖
Q =

Qr · m̂Q

Qr

(3.42)

m̂⊥Q =
(Qr × m̂Q) · ẑ

Qr

, (3.43)

respectively, where Qr ≡ (Qx, Qy). Given Eq. (3.42), ∇ · m̂j in Fu Eq. (3.39) is

particularly simple in Fourier space,

∇ · m̂j → iQrm̂
‖
Q. (3.44)

Using the definition of the Fourier transform Eq. (3.41) and Eq. (3.44), Fu Eq. (3.39)

is expressed in Fourier space,

Fu =
1

2ApJ

∫
d2r

J−1∑
j=0

∑
Q,Q′

{[
Kc

(
−Q2

rz
+
Q + iQrm̂

‖
Q

)(
−Q′r

2
z+
Q′ + iQ′rm̂

‖
Q′

)
+Kθ

(
m̂
‖
Qm̂

‖
Q′ + m̂⊥Qm̂

⊥
Q′

) ]
ei(Qz+Q′z)jD

+Bz+
Qz

+
Q′

(
eiQz(j+1)D − eiQzjD

)(
eiQ

′
z(j+1)D − eiQ′zjD

)}
ei(Qr+Q′r)·r. (3.45)

The integral in Fu Eq. (3.45) is evaluated using,

11The sample coherence volume determines the longest length scale correlations that can be di-
rectly probed by an X-ray scattering experiment, see Section 5.3.2.
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∫
Ap

d2r ei(Qr+Q′r)·r = Ap δ (Qr + Q′r) , (3.46)

where δ is the Dirac delta. Because Qz and Q′z only take on discrete values with

periodic boundary conditions,

J−1∑
j=0

ei(Qz+Q′z)jD =
1− ei(Qz+Q′z)JD

1− ei(Qz+Q′z)D
=

0, Qz +Q′z 6= 0

J, Qz +Q′z = 0
(3.47)

and

J−1∑
j=0

(
eiQz(j+1)D − eiQzjD

)(
eiQ

′
z(j+1)D − eiQ′zjD

)
= 4J sin2(QzD/2) δQz+Q′z ,0, (3.48)

where the above δ is the Kronecker delta. Utilizing Eqs. (3.46), (3.47), and (3.48),

Fu expressed in Fourier space Eq. (3.45) is simplified,

Fu =
1

2

∑
Q

[
Kc

(
−Q2

rz
+
Q + iQrm̂

‖
Q

)(
−Q2

rz
+
−Q − iQrm̂

‖
−Q

)
+Kθ

(
m̂
‖
Qm̂

‖
−Q + m̂⊥Qm̂

⊥
−Q

)
+ 4Bz+

Qz
+
−Q sin2(QzD/2)

]
. (3.49)

Following Watson et al. [1], it is convenient to express Fu Eq. (3.49) in terms of

matrices in order to calculate thermal averages. Defining the vector,

fu(Q) =
(
z+
Q, m̂

‖
Q, m̂

⊥
Q

)
, (3.50)

Fu Eq. (3.49) is expressed as an inner product involving a Hermitian matrix U,

Fu =
1

2

∑
Q

fu(−Q)U fTu (Q), (3.51)

where
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U =


KcQ

4
r + 4B sin2(QzD/2) −iKcQ

3
r 0

iKcQ
3
r KcQ

2
r +Kθ 0

0 0 Kθ

 . (3.52)

To determine thermal averages, the equipartition theorem is applied to the eigen-

modes of U. As is well known [21], various thermal averages are related to U−1 (see

Appendix A.1),

〈
fTu (Q)fu(Q′)

〉
= kBT U−1 δQ,−Q′ , (3.53)

where

U−1 =
1

C


1 + ξ2

θQ
2
r iξ2

θQ
3
r 0

−iξ2
θQ

3
r

KcQ4
r+4B sin2(QzD/2)

Kθ
0

0 0 C
Kθ

 , (3.54)

C ≡ KcQ
4
r + 4B

(
1 + ξ2

θQ
2
r

)
sin2 (QzD/2) , (3.55)

ξ2
θ ≡ Kc/Kθ, (3.56)

kB is the Boltzmann constant, and T is the temperature.

3.3.2 Height Fluctuation Spectrum

The height fluctuation spectrum
〈
|z+

Q|2
〉

is required to calculate the structure factors

S(q) Eq. (3.37) and S0(q) Eq. (3.38) and consequently, the X-ray scattering intensity

from a stack of membranes. Using Eq. (3.53) and U−1 Eq. (3.54),

〈
|z+

Q|
2
〉

= kBT U−1
1,1δQ,−Q′

= kBT
1 + ξ2

θQ
2
r

KcQ4
r + 4B(1 + ξ2

θQ
2
r) sin2(QzD/2)

δQ,−Q′

=
kBT

4B

1

ℵ2 + sin2(QzD/2)
δQ,−Q′ (3.57)
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where

ℵ2 =
ξ4Q4

r

4(1 + ξ2
θQ

2
r)

(3.58)

and

ξ4 ≡ Kc/B. (3.59)

Several membrane free energy functionals make equivalent predictions for the

height spectrum. In order to compare to the derived bilayer stack height spectrum in

Eq. (3.57), literature single membrane free energy functionals are extended to describe

bilayer stacks by adding the intermembrane interaction term

∝ B
(
z+
j+1 − z+

j

)2
. (3.60)

The augmented model advanced by Watson et al. [22] predicts Eq. (3.57), where Kc =

Kb
c − Ω̃2/(4KA) was used. The extension of the Hamm and Kozlov free energy [31] to

describe a stack of bilayers leads to a free energy functional similar to Fu Eq. (3.4),

but Hamm and Kozlov were describing a monolayer.

Tilt-dependent and -independent Height Fluctuation Spectra

The most pertinent difference between tilt-dependent and tilt-independent models is

their predictions for the height fluctuation spectrum. The tilt-independent height

spectrum is the limiting case of the tilt-dependent spectrum
〈
|z+

Q|2
〉

Eq. (3.57) when

Kθ →∞ (or equivalently ξθ = 0),

〈
|z+

Q|
2
〉��tilt

= lim
Kθ→∞

〈
|z+

Q|
2
〉

(3.61)

= kBT
1

KcQ4
r + 4B sin2(QzD/2)

δQ,−Q′ . (3.62)

In various specific cases, the tilt-dependent height fluctuation spectrum is consistent

with expected results. The single membrane height fluctuation spectra (Qz = 2π/D)
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are
〈
|z+

Q|2
〉
∝
(

1
KcQ4

r
+ 1

KθQ2
r

)
[22, 21, 1] and

〈
|z+

Q|2
〉��tilt ∝ 1

KcQ4
r
. The Kθ-dependent

term in
〈
|z+

Q|2
〉

results in more power in the height spectrum for large wavevectors,

short real-space length scales, as compared to
〈
|z+

Q|2
〉��tilt

. Fig. 3.4 shows the single

membrane versions of
〈
|z+

Q|2
〉

and
〈
|z+

Q|2
〉��tilt

. Note, that 1/ξθ =
√
Kθ/Kc separates

the bending dominated regime at lesser Qr and the tilt mode dominated regime at

greater Qr.
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Figure 3.4: Single membrane tilt-dependent (solid line) and tilt-independent (dashed
line) height spectra are plotted. The vertical short dashed line indicates the crossover
from Q−4

r to Q−2
r centered at

√
Kθ/Kc.

3.3.3 Height-height Correlation Function

The theoretical structure factors S(q) Eq. (3.37) and S0(q) Eq. (3.38) are functions

of the height-height correlation function

〈[
z+
j (r)− z+

j′ (r
′)
]2〉

=

〈∣∣∣∣∣ 1√
ApJ

∑
Q

z+
Q

(
eiQr·r+iQzz − eiQr·r′+iQzz′

)∣∣∣∣∣
2〉

(3.63)

=
1

ApJ

∑
Q,Q′

〈
z+
Qz

+
Q′

〉 (
eiQr·r+iQzz − eiQr·r′+iQzz′

)(
eiQ

′
r·r+iQ′zz − eiQ′r·r′+iQ′zz′

)
. (3.64)
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Substituting
〈
|z+

Q|2
〉

Eq. (3.57) into Eq. (3.64),

〈[
z+
j (r)− z+

j′ (r
′)
]2〉

=
kBT

4BApJ

∑
Q

(
eiQr·r+iQzz − eiQr·r′+iQzz′

) (
e−iQr·r−iQzz − e−iQr·r′−iQzz′

)
ℵ2 + sin2(QzD/2)

(3.65)

=
kBT

2BApJ

∑
Q

1− cos[Qr · (r− r′) +Qz(z − z′)]
ℵ2 + sin2(QzD/2)

. (3.66)

Assuming the step size in Qr is sufficiently small,
∑

Q in Eq. (3.66) is replaced by
Ap

(2π)2

∫
dQr

∑
Qz

,

〈[
z+
j (r)− z+

j′ (r
′)
]2〉

=
kBT

8π2JB

∫
dQr

∑
Qz

1− cos[Qr · (r− r′) +Qz(z − z′)]
ℵ2 + sin2(QzD/2)

(3.67)

=
kBT

8π2JB

∫ π/a

0

dQr Qr

∫ π

−π
dθ
∑
Qz

1− cos[Qr · (r− r′) +Qz(z − z′)]
ℵ2 + sin2(QzD/2)

(3.68)

=
kBT

4πJB

∫ π/a

0

dQr Qr

∑
Qz

1− J0(Qr|r − r′|) cos[Qz(z − z′)]
ℵ2 + sin2(QzD/2)

(3.69)

=
kBT

4πJB

∫ π/a

0

dQr Qr

∑
Qz

1− J0(Qr|r − r′|) cos[Qz(j − j′)D]

ℵ2 + sin2(QzD/2)
, (3.70)

where π/a is the longest Qr mode beyond which the continuum aproximation of the

system is no longer valid. Note, the lower integration limit is 0 since the system size

is assumed to be infinite, see Section 6.3 for further discussion.

The sum overQz in Eq. (3.70) runs fromQz = 2πj
JD

(j = −J/2+1, ...,−1, 0, 1, ..., J/2).

J is assumed to be sufficiently large that the sum in Eq. (3.70) is approximated by

an integral,
∑

Qz
→ JD

2π

∫ π/D
−π/D dQz,
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〈[
z+
j (r)− z+

j′ (r
′)
]2〉

=
kBTD

8π2B

∫ π/a

0

dQr Qr

∫ π/D

−π/D
dQz

1− J0(Qr|r − r′|) cos[Qz(j − j′)D]

ℵ2 + sin2(QzD/2)
. (3.71)

As Qr and Qz simultaneously approach zero, the integrand of Eq. (3.71) diverges.

The aforementioned divergence issue exists for the tilt-independent free energy and

was solved by Ning Lei [56] by analytically evaluating the Qz-dependent integral.

Lei’s work was followed by later researchers [44, 46]. The resulting Qr-dependent

integrand no longer diverges as Qr approaches zero, and therefore, the Qr-dependent

integral can be numerically computed without the aforementioned concern. Using

Lei’s results [56, 55],

∫ π

−π
dω

1

ℵ2 + sin2(ω
2
)

=
2π√
ℵ2 + ℵ4

(3.72)

and

∫ π

−π
dω

eimω

ℵ2 + sin2(ω
2
)

=
2π∆|m|√
ℵ2 + ℵ4

, (3.73)

where ∆ =
(√

1 + ℵ2 − ℵ
)2

, the Qz-dependent integral in Eq. (3.71) is evaluated

analytically after the substitution ω = QzD,

〈[
z+
j (r)− z+

j′ (r
′)
]2〉

=
kBT

4πB

∫ π/a

0

dQr Qr
1− J0(Qr|r − r′|)∆|j−j

′|
√
ℵ2 + ℵ4

(3.74)

=
kBT

2πBξ2

∫ π/a

0

dQr

1− J0(Qr|r − r′|)
(√

1 + ξ4Q4
r

4(1+ξ2
θQ

2
r)
− ξ2Q2

r

2
√

1+ξ2
θQ

2
r

)2|j−j′|

Qr√
1+ξ2

θQ
2
r

√
1 + ξ4Q4

r

4(1+ξ2
θQ

2
r)

. (3.75)

Defining v = ξ2Q2
r

2
and substituting into Eq. (3.75),
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〈[
z+
j (r)− z+

j′ (r
′)
]2〉

=
kBT

4πBξ2

∫ 1
2(πξa )

2

0

dv

1− J0

(√
2v |r−r

′|
ξ

)√1 + v2

1+2v
ξ2
θ
ξ2

− v√
1+2v

ξ2
θ
ξ2

2|j−j′|

v√
1+2v

ξ2
θ
ξ2

√
1 + v2

1+2v
ξ2
θ
ξ2

. (3.76)

The right hand side of Eq. (3.76) only depends on the magnitude of the separation

between two points, |r− r′| → r and |j − j′| → j. Defining dimensionless parameters

ρ ≡ r/ξ, (3.77)

` ≡ 2ξ2
θ/ξ

2, (3.78)

η ≡ πkBT

2D2Bξ2
, (3.79)

and

τ ≡ 1

2

(
πξ

a

)2

, (3.80)

〈[
z+
j (r)− z+

j′ (r
′)
]2〉

Eq. (3.76) is compactly expressed,

〈[
z+
j (r)− z+

0 (0)
]2〉

=
D2η

2π2

∫ τ

0

dv
1− J0

(√
2vρ
) (√

1 + v2

1+v`
− v√

1+v`

)2j

v√
1+v`

√
1 + v2

1+v`

(3.81)

≡ hj(ρ, `, τ). (3.82)

The natural parameters of the theory are the three dimensionless variables the Caillé

η, in-plane length ρ, and tilt strength ` from which Kc, Kθ, and B are determined. τ

is the dimensionless long wavevector cutoff.
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Tilt-dependent vs -independent Height-Height Correlation Functions

A critical difference between the tilt-dependent and -independent height-height func-

tions is the decay of their respective integrands. In the limit Kθ → ∞ (` → 0),

hj(ρ, `, τ) Eq. (3.81) reduces to the tilt-independent theory [55],

lim
`→0

hj(ρ, `, τ) = h�
�tilt
j (ρ, τ) ≡ D2η

2π2

∫ τ

0

dv
1− J0

(√
2vρ
) (√

1 + v2 − v
)2j

v
√

1 + v2
. (3.83)

For large v the integrand of hj(ρ, `, τ) Eq. (3.81) decays like v−1 as opposed to v−2

for h��tiltj (ρ, τ) Eq. (3.83). Because of the rapid decay of the tilt-independent integrand,

the upper integration limit often has been replaced by ∞, assuming that the upper

limit was sufficiently large [48, 56],

h�
�tilt
j (ρ) ≈ D2η

2π2

∫ ∞
0

dv
1− J0

(√
2vρ
) (√

1 + v2 − v
)2j

v
√

1 + v2
. (3.84)

Since the tilt-dependent integrand decays like v−1, its upper integration limit can

not be replaced by ∞. The ξ- and a-dependent upper integration limit complicates

computation of hj(ρ, `, τ) Eq. (3.81), a topic further explored in Section 4.1.
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Calculating the Height-Height

Correlation Function

Numerically calculating the theoretical height-height correlation function hj(ρ, `, τ) is

an essential step for analyzing the experimental scattering data. hj(ρ, `, τ) Eq. (3.81)

derived in Section 3.3.3 is reproduced for convenience,

hj(ρ, `, τ) =
D2η

2π2

∫ τ

0

dv
1− J0

(√
2vρ
) (√

1 + v2

1+v`
− v√

1+v`

)2j

v√
1+v`

√
1 + v2

1+v`

, (4.1)

where the dimensionless variables ρ, `, τ , and η are defined prior to Eq. (3.81); ρ (the

scaled in-plane distance), τ (the long wavevector cutoff), and the Caillé η parameter

are familiar from the tilt-independent theory; ` is a new tilt-dependent parameter.

Since hj(ρ, `, τ) is related to an integral with an oscillatory integrand care must be

paid to its computation. Additionally, hj(ρ, `, τ) is nested within other integrals in

the definitions of the structure factors, S(q) in Eq. (3.37) and S0(q) in Eq. (3.38),

and therefore, its computation should be as fast as possible to minimize analysis time.

Various approximations are made to expedite the calculation of hj(ρ, `, τ). Sec-

tion 4.1 describes the general procedure to compute hj(ρ, `, τ). Following a similar

methodology as previous researchers [48, 46, 38], values of hj(ρ, `, τ) as a function

of ρ, `, and j are computed and stored in a table. When analyzing data, the table

is queried, and its entries are used to interpolate values of hj(ρ, `, τ). In Section 4.2

an analytic approximation h̃j(ρ, `, τ) is derived, taking inspiration from the deriva-

47
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Figure 4.1: hj(ρ, `, τ) and h̃j(ρ, `, τ) are plotted as functions of ρ for several j and
` = 0.1.

tion of the tilt-independent analog [56].12 For ρ� 1, h̃j(ρ, `, τ) is used to determine

hj(ρ, `, τ), diminishing the necessary maximum ρ-value of the hj(ρ, `, τ) table. Addi-

tionally, h̃j(ρ, `, τ) is derived to compare it to its tilt-independent analog h̃j(ρ, 0,∞).

h̃j(ρ, 0,∞) is important since it was used to predict the power law decay of the scat-

tering peaks from smectic A liquid crystals [41] (of which stacked bilayers are an

example). Finally, in Section 4.3, it is argued that from a scattering perspective the

most significant differences of tilt-dependent and -independent height-height correla-

tion functions are for j ∼ 1 and ρ� 1.

Since the behavior of hj(ρ, `, τ) is not readily apparent from Eq. (4.1) and to pre-

view the main conclusion of Section 4.2, hj(ρ, `, τ) Eq. (4.1) and h̃j(ρ, `, τ) Eq. (4.54)

are plotted in Fig. 4.1 for ` = 0.1 and τ = 50 (typical values). h̃j(ρ, `, τ) well approx-

imates hj(ρ, `, τ) for ρ� 1.

12In [56], an analytic approximation of the tilt-independent height-height correlation function for
ρ� 1 is also derived. The corresponding analytic result for the tilt-dependent theory is outstanding.
Given such a result, the size of the hj(ρ, `, τ) table could be further diminished. Additionally, using
the ρ� 1 analytic approximation, it may be possible to determine a Kθ-value from the decay of the
measured scattering intensity I(qx, qz) for large qx in a similar methodology to the early power-law
analyses that determined η [42].
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4.1 Tabling hj(ρ, `, τ )

To determine the elastic moduli values that lead to the best agreement between theory

and data, hj(ρ, `, τ) Eq. (4.1) is evaluated many times in a nonlinear least squares

fitting procedure (see Chapter 7). To reduce the computational overhead for fitting

the data, values of hj(ρ, `, τ) as a function of ρ, `, and τ for each value of j can

be stored in a table. At run-time, the 4-dimensional table could be queried and a

3-dimensional interpolation would yield a value of hj(ρ, `, τ) for a given j value. The

aforementioned scheme reduces the time required to fit data since a single evaluation

of an interpolation to approximate an integral is traded for many evaluations of the

integrand. Assuming that 1000 floating point values (4 bytes each) are sampled for

each dimensionless parameter, the size of such a hj(ρ, `, τ) table would be 4 TB, much

too large to easily store and retrieve using a standard desktop computer. A lower

dimensional tabling scheme is presented in Section 4.1.1.

4.1.1 Considering the Finite Upper Limit τ

hj(ρ, `, τ) Eq. (4.1) is approximately expressed in a simpler form which is stored as

a 3-dimensional table. Given a chosen constant for the upper limit of integration τ ,

hj(ρ, `, τ) is tabled as a function of ρ and ` for each j value, a 3-dimensional table.

hj(ρ, `, τ) is calculated using the tabled values and a two-dimensional interpolation

scheme for each value of j. The aforementioned method over- or underestimates

hj(ρ, `, τ) because of the difference between the true ξ- and a-dependent upper limit,

τ ′, and the chosen τ value.

hj(ρ, `, τ
′) = hj(ρ, `, τ) +

D2η

2π2
C(τ, τ ′, `, ρ, j) (4.2)

where C(τ, τ ′, `, ρ, j) is the over- or underestimation of the integral in hj(ρ, `, τ)

Eq. (4.1).

An approximate relation for C(τ, τ ′, `, ρ, j) is derived. The smallest reasonable

value of τ is π2/2 because the in-plane correlation length ξ must be larger than

the short length scale cutoff a. Beginning with hj(ρ, `, τ) Eq. (4.1) and assuming

τ ′ > τ > π2/2,
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C(τ, τ ′, `, ρ, j) ≡
∫ τ ′

τ

dv
1− J0

(√
2vρ
) (√

1 + v2

1+v`
− v√

1+v`

)2j

v√
1+v`

√
1 + v2

1+v`

(4.3)

=

∫ τ ′

τ

dv
1 + v`

v
√

1 + v`+ v2
−
∫ τ ′

τ

dx
J0

(√
2vρ
) (√

1 + v2

1+v`
− v√

1+v`

)2j

v√
1+v`

√
1 + x2

1+v`

= C†(τ, τ ′, `)− C∗(τ, τ ′, `, ρ, j), (4.4)

where in the final line the correction was split into ρ- and j-dependent and -independent

parts. C† is evaluated analytically,

C†(τ, τ ′, `) ≡
∫ τ ′

τ

dv
1 + v`

v
√

1 + v`+ v2
(4.5)

= ln

(
τ ′

τ

)
+ ` ln

(
`+ 2τ ′ + 2fc(τ

′)

`+ 2τ + 2fc(τ)

)
− ln

(
2 + `τ ′ + 2fc(τ

′)

2 + `τ + 2fc(τ)

)
, (4.6)

where fc(x) ≡
√

1 + x`+ x2. Moving on to C∗,

C∗(τ, τ ′, `, ρ, j) ≡
∫ τ ′

τ

dv
J0

(√
2vρ
) (√

1 + v2

1+v`
− v√

1+v`

)2j

v√
1+v`

√
1 + v2

1+v`

. (4.7)

In general, C∗ � C† because its integrand oscillates about zero and

(√
1 +

v2

1 + v`
− v√

1 + v`

)2j

decays rapidly as a function of j. For j > 1, C∗ is negligible, and therefore,

C(τ, τ ′, `, ρ, j > 1) ≈ C†(τ, τ ′, `) (4.8)

⇒ hj>1(ρ, `, τ ′) ≈ hj>1(ρ, `, τ) +
D2η

2π2
C†(τ, τ ′, `). (4.9)
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hj>1(ρ, `, τ) in Eq. (4.9) is determined using a 3-dimensional (ρ, `, j) table. C† is

efficiently calculated at run-time using Eq. (4.6). For j = {0, 1}, hj(ρ, `, τ) Eq. (4.1)

is evaluated at run-time. Still, the prodedure discussed above significantly reduces

the amount of run-time computation. hj(ρ, `, τ) is tabled for 2 ≤ j ≤ jmax, where

typically jmax ≈ 2000 (approximately the number of bilayers in the sample).

In Figs. 4.2 and 4.3, Eqs. (4.2) and (4.9) are quantitatively compared, where

∆hj(ρ, `, τ
′) ≡

∣∣∣∣∣1− hj(ρ, `, τ = π2/2) + D2η
2π2 C

†(τ = π2/2, τ ′, `)

hj(ρ, `, τ ′)

∣∣∣∣∣ (4.10)

is the relative error of neglecting C∗. For all comparisons, ρ = 0 is chosen because

that maximizes C∗ and therefore provides an upper bound on ρ > 0 as well as j > 2.

Values of τ = π2/2 and τ ′ = 50 were chosen. In Fig. 4.2, ∆hj(ρ, `, τ
′) Eq. (4.10) is

plotted as a function of `. Clearly C∗ is most significant for ` = 2, an upper bound

on ` assuming ξθ ≤ ξ. Typically, ξθ < ξ and ` ≈ 0.1. Next, ∆hj(ρ, `, τ
′) Eq. (4.10) is

plotted in Fig. 4.3 as a function of j for ` = 2 or 0 . For j > 1, C∗ is neglected with

errors < 10−3.
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Figure 4.2: The relative error of neglecting C∗ as a function of `.



Chapter 4. Calculating the Height-Height Correlation Function 52

1 2 3 4
1 0 - 1 0

1 0 - 9

1 0 - 8

1 0 - 7

1 0 - 6

1 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2

 

 

           �
   2
   0

j

∆
h
j
(0
,`
,5

0)

`

Figure 4.3: The relative error of neglecting C∗ as a function of j for ` = 2 (black solid
line) and ` = 0 (red dashed line). The solid and dashed lines are upper and lower
bounds, respectively, for the relative error. Even though it is a postive integer, j has
been plotted as if it is a continuous variable.
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4.2 Analytic Approximation of hj(ρ, `, τ )

An analytic approximation for hj(ρ, `, τ) for ρ� 1 is derived to reduce the dimensions

of the (ρ, `, j) table and to compare to the tilt-independent analytic approximation,

see Eq. (4.54) for the final result. Starting from hj(ρ, `, τ) Eq. (4.1),

h̃j(ρ, `, τ) ≡ hj(ρ� 1, `, τ) (4.11)

=
D2η

2π2
lim
ε→0

(I1 − I2) , (4.12)

where

I1(`, τ ; ε) ≡
∫ τ

ε

dv
1√

v2

1+v`
+
(

v2

1+v`

)2
(4.13)

and

I2(ρ, `, τ, j; ε) ≡
∫ τ

ε

dv
J0

(√
2vρ
) (√

1 + v2

1+v`
− v√

1+v`

)2j

√
v2

1+v`
+
(

v2

1+v`

)2
. (4.14)

I1 Eq. (4.13) is evaluated analytically,

I1(`, τ ; ε) = ln

(
τ [`+ 2τ + 2fc(τ)]`

2 + `τ + 2fc(τ)

)
− ln

(
ε[`+ 2ε+ 2fc(ε)]

`

2 + `ε+ 2fc(ε)

)
, (4.15)

where fc(x) =
√

1 + `x+ x2. Moving on to I2 Eq. (4.14) for ρ� 1, the contribution

to I2 is mainly for v � 1 because of the increasingly oscillatory nature of the Bessel

function. For v � 1, √
v2

1 + v`
+

(
v2

1 + v`

)2

≈ v. (4.16)

For jv � 1,
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(√
1 +

v2

1 + v`
− v√

1 + v`

)2j

≈ exp

{
− 2jv√

1 + v`

}
. (4.17)

For v`� 1,

exp

{
− 2jv√

1 + v`

}
≈ ej`v

2

e−2jv (4.18)

≈
(
1 + j`v2

)
e−2jv. (4.19)

Substituting Eqs. (4.16), (4.17), and (4.19) into I2 Eq. (4.14),

I2 ≈ I2a ≡
∫ τ

ε

dv
(1 + j`v2)e−2jvJ0

(√
2vρ
)

v
. (4.20)

For v � 1, the integrand of Eq. (4.20) rapidly decays,

∝

v−5/4, j = 0

v3/4e−2jv, j > 0
, (4.21)

and therefore, the upper limit of integration is extended to ∞.

I2a(ρ, `, τ, j; ε) ≈ I2b(ρ, `, j; ε) ≡
∫ ∞
ε

dv
(1 + j`v2)e−2jvJ0

(√
2vρ
)

v
. (4.22)

Note, Eq. (4.22) is reasonable for j > 0. After completing the derivation of the

j > 0 analytic approximation, the special case of j = 0 is discussed, see Eq. (4.48).

Replacing J0

(√
2vρ
)

in Eq. (4.22) with its Taylor series about v = 0,
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I2b =

∫ ∞
ε

dv
(1 + j`v2) e−2jv

v

∞∑
k=0

(−1)k

(k!)2

(√
2vρ

2

)2k

(4.23)

=
∞∑
k=0

(−1)k
(
ρ√
2

)2k (∫ ∞
ε

dv
vk−1e−2jv

(k!)2
+ j`

∫ ∞
ε

dv
vk+1e−2jv

(k!)2

)
. (4.24)

Substituting y = 2jv,

I2b(ρ, `, j > 0; ε)

=
∞∑
k=0

(−1)k
(
ρ√
2

)2k
1

(2j)k

(∫ ∞
2jε

dy
yk−1e−y

(k!)2
+

`

4j

∫ ∞
2jε

dy
yk+1e−y

(k!)2

)
. (4.25)

First, the k = 0 term I2b.1 in I2b Eq. (4.25) is evaluated,

I2b.1 ≡
∫ ∞

2jε

dy e−y
(

1

y
+
`y

4j

)
= E1(2jε) +

`

4j
(1 + 2jε)e−2jε, (4.26)

where E1(x) is the exponential integral. Moving on to the k 6= 0 terms in I2b.2

Eq. (4.25) and allowing ε→ 0,

I2b.2 ≡
∞∑
k=1

(−1)k

(k!)2

(
ρ2

4j

)k (∫ ∞
0

dy yk−1e−y +
`

4j

∫ ∞
0

dy yk+1e−y
)

(4.27)

=
∞∑
k=1

(−1)k

(k!)2

(
ρ2

4j

)k (
Γ(k) +

`

4j
Γ(k + 2)

)
. (4.28)

Using Γ(t+1) = tΓ(t) and Γ(t) = (t−1)! if t is a positive integer, Eq. (4.28) is further

rewritten,
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I2b.2 =
∞∑
k=1

(−1)k

(k!)2

(
ρ2

4j

)k (
Γ(k) +

`

4j
k(k + 1)Γ(k)

)
(4.29)

=
∞∑
k=1

(−1)k

(k!)2
(k − 1)!

(
ρ2

4j

)k (
1 +

`

4j
k(k + 1)

)
(4.30)

=
∞∑
k=1

(−1)k

k(k!)

(
ρ2

4j

)k (
1 +

`

4j
k(k + 1)

)
. (4.31)

Using,

∞∑
k=1

(−1)k

k(k!)
xk = −γ − lnx− E1(x), (4.32)

∞∑
k=1

(−x)k

k!
= e−x − 1, (4.33)

and

∞∑
k=1

k
(−x)k

k!
= −xe−x (4.34)

where γ is the Euler-Mascheroni constant, I2b.2 Eq. (4.31) is expressed as

I2b.2 =
∞∑
k=1

(−1)k

k(k!)

(
ρ2

4j

)k (
1 +

`

4j
k(k + 1)

)
(4.35)

= −γ − ln

(
ρ2

4j

)
− E1

(
ρ2

4j

)
+

`

4j
(−xe−x + e−x − 1), (4.36)

where x = ρ2/4j. Adding I2b.1 Eq. (4.26) and I2b.2 Eq. (4.36), I2b Eq. (4.25) is written

I2b = E1(2jε) +
`

4j
(1 + 2jε)e−2jε − γ − ln

(
ρ2

4j

)
−E1

(
ρ2

4j

)
+

`

4j
(−xe−x + e−x − 1).

(4.37)

Returning to h̃j(ρ, `, τ) Eq. (4.12) and using I1 Eq. (4.15) and I2b Eq. (4.37),
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(
2π2

D2η

)
h̃j>0(ρ, `, τ) = lim

ε→0

[
I1(`, τ ; ε)− I2b(ρ, `, j > 0; ε)

]
(4.38)

≈ ln

(
τ [`+ 2τ + 2fc(τ)]`

2 + `τ + 2fc(τ)

)
− lim

ε→0

[
ln

(
ε[`+ 2ε+ 2fc(ε)]

`

2 + `ε+ 2fc(ε)

)
+ E1(2jε) +

`

4j
(1 + 2jε)e−2jε

]
+ γ + ln

(
ρ2

4j

)
+ E1

(
ρ2

4j

)
+

`

4j
(xe−x − e−x + 1). (4.39)

Focusing on the ε-dependent terms in Eq. (4.39),

lim
ε→0

[
ln

(
ε[`+ 2ε+ 2fc(ε)]

`

2 + `ε+ 2fc(ε)

)
+ E1(2jε) +

`

4j
(1 + 2jε)e−2jε

]
= lim

ε→0

[
ln

(
ε[`+ 2ε+ 2fc(ε)]

`

2 + `ε+ 2fc(ε)

)
− ln(2jε)−

∞∑
k=1

(−2jε)k

k(k!)

]
− γ +

`

4j
(4.40)

= lim
ε→0

[
ln

(
[`+ 2ε+ 2fc(ε)]

`

2j[2 + `ε+ 2fc(ε)]

)]
− γ +

`

4j
(4.41)

= ln

(
(`+ 2)`

8j

)
− γ +

`

4j
, (4.42)

where

E1(x) = −γ − lnx−
∞∑
k=1

(−1)k

k(k!)
xk (4.43)

was used to obtain the second line, see Eq. (4.32). Substituting Eq. (4.42) into

Eq. (4.39),
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(
2π2

D2η

)
h̃j>0(ρ, `, τ)

≈ ln

(
τ [`+ 2τ + 2fc(τ)]`

2 + `τ + 2fc(τ)

)
− ln

(
(`+ 2)`

8j

)
+ 2γ − `

4j
+ ln

(
ρ2

4j

)
+ E1

(
ρ2

4j

)
+

`

4j
(xe−x − e−x + 1) (4.44)

= ln

(
τ [`+ 2τ + 2fc(τ)]`

2 + `τ + 2fc(τ)

)
− ln

(
(`+ 2)`

2

)
+ 2γ + ln(ρ2) + E1

(
ρ2

4j

)
+

`

4j

(
ρ2

4j
− 1

)
exp

{
−ρ

2

4j

}
. (4.45)

The final ρ-dependent term in Eq. (4.45),

`

4j

(
ρ2

4j
− 1

)
exp

{
−ρ

2

4j

}
, (4.46)

is always a small contribution. Neglecting it, Eq. (4.45) is simplified

h̃j>0(ρ, `, τ)

≈ D2η

2π2

[
E1

(
ρ2

4j

)
+ ln

(
ρ2
)

+ 2γ + ln

(
τ [`+ 2τ + 2fc(τ)]`

2 + `τ + 2fc(τ)

)
− ln

(
(`+ 2)`

2

)]
.

(4.47)

To complete the derivation of the ρ� 1 analytic approximation of hj(ρ, `, τ), the

special case of j = 0 is considered. Returning to I2b Eq. (4.22) for j = 0,

I2b(ρ, `, j = 0; ε) =

∫ ∞
ε

dv
J0

(√
2vρ
)

v
, (4.48)

Substituting y =
√

2vρ,
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I2b(ρ, `, 0; ε) = 2

∫ ∞
√

2ερ

dy
J0(y)

y
(4.49)

= −2γ − ln(ρ2)− ln
( ε

2

)
+ 2

∫ √2ερ

0

dy
1− J0(y)

y
, (4.50)

where Eq. (4.50) follows from a formula found in Abramowitz and Stegun [71],

(11.1.20). Finally, substituting I1 Eq. (4.15) and I2b Eq. (4.50) into Eq. (4.12)

(
2π2

D2η

)
h̃0(ρ, `, τ)

= lim
ε→0

[
I1(`, τ ; ε)− I2b(ρ� 1, `, 0; ε)

]
(4.51)

≈ ln

(
τ [`+ 2τ + 2fc(τ)]`

2 + `τ + 2fc(τ)

)
+ 2γ + ln

(
ρ2
)

− lim
ε→0

[
ln

(
ε[`+ 2ε+ 2fc(ε)]

`

2 + `ε+ 2fc(ε)

)
− ln

( ε
2

)
+ 2

∫ √2ερ

0

dy
1− J0(y)

y

]
(4.52)

= ln
(
ρ2
)

+ 2γ + ln

(
τ [`+ 2τ + 2fc(τ)]`

2 + `τ + 2fc(τ)

)
− ln

(
(`+ 2)`

2

)
. (4.53)

h̃j>0(ρ, `, τ) and h̃0(ρ, `, τ) are combined since for j = 0, E1(ρ2/4j) = 0. Therefore,

using Eqs. (4.47) and (4.53), the analytic approximation is compactly expressed as

h̃j(ρ, `, τ) = h̃�
�tilt
j (ρ) +

D2η

2π2
Λ(`, τ), (4.54)

where

Λ(`, τ) ≡ ln

(
τ [`+ 2τ + 2fc(τ)]`

2 + `τ + 2fc(τ)

)
− ln

(
(`+ 2)`

2

)
(4.55)

and h̃��tiltj (ρ) is the tilt-independent analytic approximation,

h̃�
�tilt
j (ρ) ≡ D2η

2π2

[
E1

(
ρ2

4j

)
+ ln

(
ρ2
)

+ 2γ

]
. (4.56)
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Figure 4.4: hj(ρ, `, τ) and its analytic approximation h̃j(ρ, `, τ) are plotted as func-
tions of ρ for several j and ` = 0.1. h̃j(ρ, `, τ) is a good approximation for ρ� 1.

In the limit ` → 0 and τ → ∞, Λ(`, τ) → 0, and h̃j(ρ, `, τ) → h̃j(ρ)��tilt. The ρ-

dependence of the tilt-dependent and -independent theories is approximately the

same. The lowest order ρ-dependent correction to h̃j(ρ, `, τ) was neglected, see

Eq. (4.46). The primary effect of including tilt is to contribute the additive factor

D2η

2π2
Λ(`, τ). (4.57)

Fig. 4.4 (plotted again for convenience from the beginning of the chapter) and

Fig. 4.5 show hj(ρ, `, τ) Eq. (4.1) and h̃j(ρ, `, τ) Eq. (4.54) for various j-values and

` = 0.1 and ` = 2, respectively. ` ≈ 0.1 and τ ≈ 50 are typical values, and ` = 2 is the

largest reasonable `-value. Figs. 4.6 and 4.7 show the relative error of hj(ρ, `, τ) and

h̃j(ρ, `, τ). h̃j(ρ, `, τ) is used to approximate hj(ρ, `, τ) for ρ > 10, where the relative

error is less than 10−3 for ` ≤ 2.
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Figure 4.5: hj(ρ, `, τ) and its analytic approximation h̃j(ρ, `, τ) are plotted as func-
tions of ρ for several j and ` = 2. h̃j(ρ, `, τ) is a good approximation for ρ� 1. The
small amplitude oscillations in h0(ρ, `, τ) are caused by the interplay between ξ and
ξθ.
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Figure 4.6: The relative error of hj(ρ, `, τ) and h̃j(ρ, `, τ) is plotted as a function of
ρ for several j and ` = 0.1. The jagged features of the curves are likely numerical
artifacts.
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Figure 4.7: The relative error of hj(ρ, `, τ) and h̃j(ρ, `, τ) is plotted as a function of
ρ for several j and ` = 2. The jagged features of the curves are likely numerical
artifacts.
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4.3 Difference of Tilt-dependent and -independent

Height-Height Correlations

In Section 4.2 it was shown that in the limit ρ � 1 the difference between tilt-

dependent and -independent height-height correlation functions is approximately,
D2η
2π2 Λ(`, τ), see Eq. (4.54). Below, it is shown that in the limit j � 1, the differ-

ence between tilt-dependent and -independent correlation functions is also D2η
2π2 Λ(`, τ).

Using hj(ρ, `, τ) Eq. (4.1),

D2η

2π2
Λ′(`, τ) ≡ lim

j�1

[
hj(ρ, `, τ)− h��tiltj (ρ)

]
(4.58)

= lim
j�1

[hj(ρ, `, τ)− hj(ρ, 0, τ)] (4.59)

⇒ Λ′(`, τ) = lim
j�1

[∫ τ

0

dv
1− J0

(√
2vρ
) (√

1 + v2

1+v`
− v√

1+v`

)2|j|

v√
1+v`

√
1 + v2

1+v`

(4.60)

−
∫ τ

0

dv
1− J0

(√
2vρ
) (√

1 + v2 − v
)2|j|

v
√

1 + v2

]
. (4.61)

The terms raised to the 2|j| decay very rapidly as functions of v, and decay increas-

ingly rapidly for increasing j. Therefore the aforementioned terms are neglected in

the limit j � 1. Simplifying Λ′ Eq. (4.61),

Λ′(`, τ) =

∫ τ

0

dv

 1

v√
1+v`

√
1 + v2

1+v`

− 1

v
√

1 + v2

 (4.62)

=

[
ln

(
[`+ 2v + 2fc(v)]`

2 + `x+ 2fc(v)

)
+ ln

(
1 +
√

1 + v2
)]∣∣∣∣τ

0

(4.63)

= ln

(
[`+ 2τ + 2fc(τ)]`

2 + `τ + 2fc(τ)

)
+ ln

(
1 +
√

1 + τ 2
)
− ln

(
(`+ 2)`

8

)
(4.64)

≈ ln

(
τ [`+ 2τ + 2fc(τ)]`

2 + `τ + 2fc(τ)

)
− ln

(
(`+ 2)`

8

)
(4.65)

= Λ(`, τ). (4.66)
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Λ′ Eq. (4.65) is the same as Λ Eq. (4.55). For j � 1 or ρ � 1, the difference of

tilt-dependent and -independent height-height correlation functions is approximately

a constant.

It can be shown that adding a constant (such as Λ) to the height-height corre-

lation function has a predictable influence on the predicted scattering intensity, see

Appendix D.1 for an analogous argument regarding a different issue, and that this

influence can not be used to differentiate tilt-dependent and -independent models.

Therefore as expected, the most significant difference between tilt-dependent and

-independent height-height correlation functions occur for j ∼ 1 and ρ� 1.

4.4 Corresponding Caillé Exponents

Previous researchers have used the ρ � 1 tilt-independent approximation of the

height-height correlation function h̃��tiltj (ρ) Eq. (4.56) to interpret scattering from smec-

tic liquid crystals [42, 37]. Consequently, the corresponding analytic approximation of

the tilt-dependent height-height correlation function h̃j(ρ, `, τ) Eq. (4.54) is important

in order to allow comparison with previous work. Quasi-long range order in smectic

A liquid crystals was first established by analyzing X-ray scattering. Considering a

continuous infinite smectic liquid crystal, Caillé predicted that the out-of-plane X-ray

peaks have power-law tails, a consequence of the logarithmic divergence for increasing

ρ of h̃��tiltj (ρ) Eq. (4.56). The predicted power law tails are

S (qr, 2πh/D) ∝ q−(4−2ηh)
r (4.67)

S (0,∆qz,h) ∝ ∆q
−(2−ηh)
z,h , (4.68)

where

ηh ≡ h2η, (4.69)

∆qz,h ≡ qz − qz,h, (4.70)

and qz,h is the qz-position of the hth out-of-plane Caillé peak. h is a positive integer

that indexes the out-of-plane peaks. Later, Als Nielsen et al. experimentally observed
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the aforementioned power-law tails, verifying Caillé’s predictions [42]. In 1988-89, it

was shown that the scattering from a stack of lipid bilayers is also well described

by smectic liquid crystal theory [36, 37]. Finally, Ning Lei derived that the power-

law exponents for a smectic free energy, discrete in the z-direction, are the same as

predicted by Caillé [56, 55].

In Section 4.2, it was shown that h̃j(ρ, `, τ) and h̃��tiltj (ρ) have approximately the

same ρ-dependence. Therefore, the scattering power law exponents derived by Lei

and Caillé are negligibly modified by considering tilt. Consequently, previous mea-

surements focused on the scattering intensity in the tails of the Caillé peaks can not

be meaningfully reanalyzed to obtain tilt-associated information. The effect of con-

sidering tilt is to modify the height-height spectrum for large Qr, short real-space

length scales (see Section 3.3.2). Therefore as expected, the r � ξ analytic approx-

imation of hj(ρ, `, τ) and related predicted scattering peak power-law exponents are

insignificantly influenced by including tilt.



Chapter 5

Predicted Experimental Scattering

Intensity

The theoretical scattering intensity from stacked lipid bilayers was introduced in

Section 3.2.2. The measured intensity differs from the theoretical scattering intensity

because of several sample-dependent and experimental issues. The sample-dependent

effects are discussed first, followed by the experimental ones. First in Section 5.1,

the theoretical structure factor S(q) is rewritten in cylindrical coordinates, assuming

that the scattering intensity from the sample is the incoherent sum of scattering from

sample subvolumes of cylindrical shape. Next in Section 5.2, the effects of domain

mosaicity are briefly reviewed, finishing the derivation of the predicted scattering

from multidomain stacked bilayers.

The effects of experimental issues on the predicted scattering intensity are dis-

cussed in Section 5.3. First the scattering geometry is described in Subsection 5.3.1.

In Subsection 5.3.2 the X-ray beam’s coherence is defined, and the sample coherence

volume is derived. Then in Subsection 5.3.3, the beam shape on the detector is mod-

eled. In Subsection 5.3.4 absorption effects are discussed, completing the derivation

of the predicted scattering intensity for a fixed incident angle X-ray exposure. For

most low angle X-ray scattering data, the incident angle is continuously varied dur-

ing an exposure. Therefore, the fixed angle exposure prediction is integrated over all

relevant incident angles in Subsection 5.3.5.

Since the current work can be viewed as an extension of previous research and

fitting software (NFIT) [48, 46], many issues in this chapter are compared to the prior

work.

66
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5.1 Structure Factor for Cylindrical Subvolumes

In Lyatskaya et al. [44], the structure factor S(q) Eq. (3.37) was presented in cylin-

drical coordinates. Later, S(q) was expressed in Cartesian coordinates, motivated

by the consideration of X-ray coherence issues [48, 46] (see Section 5.3.2) and as-

suming rectangular cuboid domains. Appendix B further discusses S(q) in Cartesian

coordinates and shows that the predicted scattering from rectangular cuboid domains

includes features that are not experimentally observed. Therefore, S(q) is expressed

in cylindrical coordinates.

In Section 3.2.2, the scattering intensity was decomposed into the sum of two

terms, see Eq. (3.28),

I(q) ≈ F∆(qz)S0(q) + |F (qz)|2 S(q), (5.1)

where

S(q) =
∑
j,j′

∫ ∫
d2r d2r′ eiqz(j−j′)D+iqr·(r−r′)e

− q
2
z
2

〈
[z+
j (r)−zj′ (r′)]

2
〉

(5.2)

=
∑
j,j′

∫ ∫
d2r d2r′ eiqz(j−j′)D+iqr·(r−r′)G(r, r′, j, j′, qz) (5.3)

S0(q) =
∑
j

∫ ∫
d2r d2r′ eiqr·(r−r′)G(r, r′, 0, 0, qz) (5.4)

=
∑
j,j′

δj,j′

∫ ∫
d2r d2r′ eiqr·(r−r′)G(r, r′, j, j′, qz). (5.5)

G(r, r′, j, j′, qz) is the pair scattering correlation function, and δj,j′ is the Kronecker

delta function. Since S0(q) Eq. (5.5) is a special case of S(q) Eq. (5.3), the following

derivations only involve S(q). Using Eq. (5.3) and following similar previous work [44],

S(q) of a cylindrically symmetric single domain (SD) composed of J layers with

diameter Lr is expressed as
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SSD(qr, qz;Lr, J) ≡
J−1∑
j,j′=0

eiqz(j−j′)D
∫
|r|,|r′|≤Lr/2

d2r d2r′ eiqr·(r−r′)G(r, r′, j, j′, qz).

(5.6)

Since the height-height correlations only depend on the in-plane magnitude r and the

out-of-plane distance |j − j′|D (translational invariance), the pair scattering correla-

tion function G in Eq. (5.6) is more simply expressed,

G(r, r′, j, j′, qz)→G(|r− r′|, |j − j′|, qz) (5.7)

=G(r, j, qz). (5.8)

Using G Eq. (5.8), SSD Eq. (5.6) is written

SSD(qr, qz;Lr, J) = πL2
r

J−1∑′

j=0

(J − j) cos(qzjD)

∫ Lr

0

dr rFr

(
r

Lr

)
J0(qrr) G(r, j, qz),

(5.9)

where

∑
(2− δj,0) =

∑′
≡

multiply element by 1, j = 0

multiply element by 2, j 6= 0
(5.10)

and

Fr(x) ≡

cos−1(x)− x
√

1− x2 , x ≤ 1

0 , x > 1,
(5.11)

accounting for the area overlap of two equal radius circles with centers separated by

a fraction of their radius x [72].

Further modeling of the stacked bilayers is affected by both sample attributes and

experimental details. The stacked bilayer sample is unlikely to be a single crystal.

Due to defects, inhomogeineity, and various other nonidealities, positional correlations

generally do not exist between all points in a macroscopic sample. Consequently,

the stacked bilayers are assumed to be composed of many cylindrical domains with
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characteristic sizes Lr and Lz. By definition fluctuations in different domains are

uncorrelated, and therefore, Lr and Lz limit long length scale correlations in the

sample. Importantly, the perception of long length scale correlations is influenced

by details of the scattering experiment. Only the scattering from points within a

sample coherence volume (diameter of Lr and height Lz) are added coherently, see

Section 5.3.2. Therefore, only correlations shorter than Lr and Lz are probed during

an X-ray scattering experiment. Finally, the scattering from the sample is assumed

to be the incoherent sum of scattering from many cylindrical subvolumes. The sizes

of the subvolumes are determined by the smaller of the characteristic sample domain

sizes (Lr and Lz) and the sample coherence volume (Lr and Lz).13

Further, the diameter and height of the subvolumes are described by distributions

Pr and Pz, respectively. Pr and Pz are assumed to be independent and are unknown.

Previously, either Gaussians [38, 44] or exponentials [46, 73] have been used. For

upcoming theoretical derivations, only the characteristic length of the distribution is

important, the mean or the 1/e length for a Gaussian or an exponential, respectively;

the particular functional form of Pr and Pz is unimportant. Therefore, the decision to

use Gaussian or exponential distributions is postponed (see Section 6.2). Derivations

specific to Gaussian and exponential distributions are presented in Sections 5.1.1

and 5.1.2, respectively. From a data fitting perspective, the most significant difference

between Gaussian and exponential distributions is the number of required parameters:

two for a Gaussian (mean and standard deviation) and one for an exponential (1/e

length).

The structure factor of the many domain (MD) sample SMD is expressed as the

sum over the single domain SSD Eq. (5.9),

13As an illuminating example, the case of an infinite single crystal (Lr = Lz = ∞) is discussed.
By construction, positional correlations persist over the entire crystal. However, an X-ray scattering
measurement only probes correlations over length scales less than Lr and Lz. Therefore, the effective
sizes of the cylindrical subvolumes are Lr and Lz.
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SMD(qr, qz) ≡
∫ ∞

0

dLz Pz(Lz)

∫ ∞
0

dLr Pr(Lr)SSD(qr, qz) (5.12)

=

∫ ∞
0

dLz Pz(Lz)

J−1∑′

j=0

(J − j) cos(qzjD)·

∫ ∞
0

dLr Pr(Lr)

∫ Lr

0

dr rπL2
rFr(r/Lr)J0(qrr)G(r, j, qz). (5.13)

The second line of Eq. (5.13) is an example of an iterated integral. The upper limit of

the inner r-dependent integral is a function of the integration variable of the outer Lr-

dependent integral. The integration order of the two integrals can be reversed if the

integration limits are suitably modified. Similarly, the order of the j-dependent sum

and Lz-dependent integral can be changed. Exchanging the integrals and modifying

their limits, SMD Eq. (5.13) is succinctly written as

SMD(qr, qz) =

∞∑′

j=0

Hz(jD) cos(qzjD)

∫ ∞
0

dr rHr(r)J0(qrr)G(r, j, qz), (5.14)

where

Hr(r) = π

∫ ∞
r

dLr Pr(Lr)L
2
rFr(r/Lr) (5.15)

and

Hz(z) ≡
∫ ∞
z

dLz Pz(Lz)(Lz − z)/D (5.16)

are effective in- and out-of-plane finite-size factors, respectively. For completeness,

the S0 analog to SMD Eq. (5.14) is

S0,MD(qr, qz) ≡
∞∑′

j=0

δj,0Hz(jD) cos(qzjD)

∫ ∞
0

dr rHr(r)J0(qrr)G(r, j, qz). (5.17)
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5.1.1 Gaussian Subvolume Distributions

The mean diameter Lr and height Lz are determined by the smaller of the domain

size (Lr and Lz) and the sample coherence length (Lr and Lz), see Eqs. (5.79)

and (5.81). Assuming that the X-ray wavepackets are Gaussian, both the in- and

out-of-plane coherence length distributions would be Gaussian [74], and Gaussian

domain size distributions are reasonable [38],

Pr(Lr) ≡
1

σr
exp

{
− (Lr − Lr)

2 /2σ2
r

}
(5.18)

and

Pz(Lz) ≡
1

σzLz
exp

{
− (Lz − Lz)

2 /2σ2
z

}
, (5.19)

where σr and σz are assumed to be constants.

The factor of Lz in the denominator of Pz accounts for the fixed number of layers

in the sample; L−1
z is proportional to the number of subvolumes with height Lz in

the X-ray illuminated sample volume. Earlier work in this lab also assumed Gaussian

distributions [44, 38]. Hz Eq. (5.16) is expressed in terms of tabled functions

Hz(z) =

√
2

2DLz

[
√

2σzexp

{
−
(
z − Lz√

2σz

)2
}

+
√
π (Lz − z) erfc

(
z − Lz√

2σz

)]
, (5.20)

where erfc is the complementary error function

erfc(x) =
2√
π

∫ ∞
x

du e−u
2

. (5.21)

5.1.2 Exponential Subvolume Distributions

Originally, Gaussian domain size distribution functions were proposed in the modified

Caillé theory [38]. Soon afterwards, exponential distribution functions were shown

to fit X-ray scattering data from multilamellar vesicles as well as if not better than
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Gaussian distributions [73] (see pp. 18-22). Subsequently, exponential distributions

were used to describe both the domain size and sample coherence distributions [48, 46].

The exponential analogs to Eqs. (5.18) and (5.19) are

P ′r(Lr) ≡
1

Lr
exp {−Lr/Lr} (5.22)

and

P ′z(Lz) ≡
1

L2
z

exp {−Lz/Lz} . (5.23)

The second factor of Lz in the denominator of P ′z accounts for the fixed number of

layers in the sample. Since the exponential distributions are peaked at 0, a significant

fraction of the domains are too small for the correlation functions to be reasonably

approximated by an infinite domain, see Section 6.3. For an exponential distribution,

Hz Eq. (5.16) is evaluated analytically

Hz(z) =
1

D
exp {−z/Lz} . (5.24)

5.2 Mosaicity

In Section 5.1 the sample was assumed to be composed of many domains with differ-

ent sizes. Ideally, all of the domains would be oriented such that their out-of-plane

repeat direction is parallel to the substrate normal. Similarly to the description of

orientational disorder of crystallites within a polycrystalline solid, the bilayer domain

normals are described by a peaked orientational distribution function, often called

the mosaic spread distribution. Typically for lipid bilayer stacks, the distribution

function has a single maximum along the substrate normal and has no azimuthal

dependence. A previous tilt-independent LAXS analysis considered a Gaussian mo-

saic spread distribution [48]. Motivated by recent experimental results (Nagle lab

in preparation), the current methodology replaces the Gaussian distribution function

with a Lorentzian

jnagle
Sticky Note
A manuscript has been submitted for publication as of 9/15/2015.  In addition a report has been prepared that proposes a correction to the bending modulus obtained when applying NFIT to samples with up to 1.5 degrees mosaic spread 10/15/2015.
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Pm(θ) ≡ 2γm

π

1

4θ2 + γ2
m

, (5.25)

where γm is the full width at half maximum (FWHM) of the Lorentzian. For the best

oriented samples, the mosaicity is sufficiently small (∼0.1◦) that the effect of mosaic

spread is modeled as a convolution along planes of constant qz [48], as opposed to

a double integral over polar and azimuthal angles along surfaces of constant q [50].

Using I(q) Eq. (5.1), the theoretically predicted scattering intensity from a sample

composed of many misoriented domains is

Im(q) ≡ I(qr, qz) ∗ Pm(qr), (5.26)

where ∗ indicates a convolution. Substituting SMD Eq. (5.13) and S0,MD Eq. (5.17)

into Im Eq. (5.26),

Im(q) = |F (qz)|2
[
SMD(qr, qz) ∗ Pm(qr)

]
+ F∆(qz)

[
S0,MD(qr, qz) ∗ Pm(qr)

]
(5.27)

= |F (qz)|2 Sm
MD(q) + F∆(qz)S

m
0,MD(q). (5.28)

The effect of larger mosaic spread is not dealt with in this thesis.

5.3 Experimental Details

Various experimental details influence the measured X-ray scattering intensity. First

in Section 5.3.1, the scattering geometry for a fixed low angle X-ray scattering exper-

iment is described, and the well-known relationship between detector space (px, pz, ω)

and q-space is derived. Next in Section 5.3.2, the beam’s coherence is defined, and

the sample coherence volume is evaluated. Then in Section 5.3.3, a general formalism

to determine the beam shape on the detector is presented, and the effect of the beam

size on the predicted scattering intensity is modeled. Absorption of the incident and

scattered X-rays by the sample is considered in Section 5.3.4, concluding the descrip-

tion of the predicted scattering from a fixed angle exposure. Finally, since the incident
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angle is continuously varied during most LAXS exposures, the fixed angle prediction

is summed over all relevant incident angles in Section 5.3.5.

5.3.1 Scattering Geometry

ki

kf
2θ

φ

ω(0, 0)

(px, pz)

CCD

Figure 5.1: The scattering geometry for a low angle scattering experiment is shown.
The solid red lines indicate the path of an incident and scattered X-ray, and the
dashed red line is the path of the direct beam after the sample (green rectangle).
Sample and CCD are not to scale. The sample size is 5 × 30 mm, and the sensitive
surface of the detector is about 73× 73 mm.

The scattering geometry for a fixed angle experiment is shown in Fig. 5.1. ω

is the angle of incidence, 2θ is the angle between the direct and scattered beams,

and φ is the angle between the line px = 0 and the scattered beam measured on

the detector. (px, pz) is a position on the flat detector surface, and for notational

convenience the direct beam is incident upon the detector at (0, 0). The incident and

outgoing wavevectors are

ki =
2π

λ
ŷ (5.29)

and
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kf =
2π

λ

(
x̂ sin(2θ) cosφ+ ŷ cos(2θ) + ẑ sin(2θ) sinφ

)
, (5.30)

respectively, where λ is the X-ray wavelength.

The momentum transfer vector, or scattering vector, is

q ≡ kf − ki. (5.31)

As the sample is rotated about the x-axis by an angle ω, the projection of q along the

sample centered coordinates changes. The sample coordinates (primed) are expressed

as functions of the unrotated coordinates and ω,

x̂′ = x̂ (5.32)

ŷ′ = ŷ cosω + ẑ sinω (5.33)

ẑ′ = −ŷ sinω + ẑ cosω. (5.34)

Finally, the components of q in sample coordinates are

qx = q · x̂′ = q cos θ cosφ, (5.35)

qy = q · ŷ′ = q(− sin θ cosω + cos θ sinφ sinω), (5.36)

qz = q · ẑ′ = q(sin θ sinω + cos θ sinφ cosω), (5.37)

and q = 4π sin θ/λ.

In following sections, the relation between CCD space (px, pz, ω) and q-space is

required. Rewriting Eqs. (5.35), (5.36), and (5.37) in terms of px, pz, and ω,
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qx(px, pz) =
2πpx
λs

1√
δ(px, pz)

(5.38)

qy(px, pz, ω) =
2π

λ

[(
1√

δ(px, pz)
− 1

)
cosω +

pz sinω

s

1√
δ(px, pz)

]
(5.39)

qz(px, pz, ω) =
2π

λ

[(
1− 1√

δ(px, pz)

)
sinω +

pz cosω

s

1√
δ(px, pz)

]
, (5.40)

where

δ(px, pz) ≡ 1 +
p2
x + p2

z

s2
(5.41)

and s is the sample to detector distance in units of pixels.

For small 2θ (or equivalently p2
x + p2

z � s2) and ω, Eqs. (5.38), (5.39), and (5.40)

are approximately written

qx(px, pz) ≈
2π

λs
px, (5.42)

qy(px, pz, ω) ≈ 2π

λ

[
−p

2
x + p2

z

2s2
+
pzω

s

]
, (5.43)

qz(px, pz, ω) ≈ 2π

λs
pz. (5.44)

qx (qz) is approximately linear in px (pz).

5.3.2 Coherence Effects

An X-ray beam is not perfectly collimated or monochromatic. Due to angular di-

vergence and energy dispersion, an X-ray beam has a finite volume over which it is

coherent; the phases of X-rays within a coherent volume are not too dissimilar so the

X-rays interfere with each other [62]. Making the simplifying assumption of a sharp

coherence cutoff, one may conveniently define a coherence volume. If the coherent

volume is smaller than the total illuminated sample volume, then the scattering from

the sample is an incoherent sum of the scattering from coherent subvolumes. The

beam coherence volume projected onto the sample is referred as the sample coher-

ence volume. The sample coherence volume is derived and shown to be smaller than

jnagle
Sticky Note
There is a better way to treat coherence, but it will likely give insignificantly different results.  Iy would multiply the correlation functions by a fraction corresponding to the spatial decay of the photonic wavepacket. 
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the total illuminated sample volume.

The coherence of the X-ray beam is described by three coherence lengths, two

transverse and one longitudinal [62], see Fig. 5.2. The transverse coherence lengths

are related to the angular divergence of the beam

ξTz

ξTx

ξL

Figure 5.2: Diagram defining transverse ξT and longitudinal ξL coherence lengths of
the X-ray beam. The horizontal solid red line and arrow indicate the primary X-ray
propagation direction. ξTx, ξTz, and ξL are not drawn to scale.

ξTx ≡
λ

2∆γx
(5.45)

ξTz ≡
λ

2∆γz
, (5.46)

where ∆γx and ∆γz are the angular divergence of the beam in the x- and z-directions,

respectively, and λ is the X-ray wavelength. The longitudinal coherence length is

related to the energy spread of the beam ∆λ,

ξL ≡
λ2

2∆λ
. (5.47)

For our experimental setup, λ ' 1.2 Å, ∆γx ' ∆γz = 10−4 rad, and ∆λ/λ ≈ 0.01 for

low resolution W/B4C multilayers and ∆λ/λ ≈ 10−4 for high resolution double bounce

Si channel cut. Therefore, ξTx ≈ ξTz ≈ 6000 Å and ξL ≈ 60 Å or ξL ≈ 6000 Å. Note,

the coherent volume of the beam is not equivalent to the coherent sample volume.

Sidenote

Often, the incident X-ray beam’s energy dispersion and angular divergence are consid-

ered when assessing the q-resolution of the experiment. A q-resolution function W (q) is
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commonly convoluted with the theoretical scattering intensity,

IR(q) =

∫
d3q′ I(q′)W (q− q′), (5.48)

where W (q) is assumed to be a peaked function with rapidly decaying tails [75]. Substi-

tuting Im(q) Eq. (5.28) into Eq. (5.48),

IR(q) =

∫
d3q′

[
|F (qz)|2 Sm

MD(q) + F∆(qz)S
m
0,MD(q)

]
W (q− q′). (5.49)

Finite resolution mixes |F (qz)|2 and F∆(qz) with Sm
MD(q) and Sm

0,MD(q), respectively.

Since |F (qz)|2 and F∆(qz) are approximately constant for ∆qz similar to the width of

W (q), the effect of q-resolution is well approximated by

IR(q) ≈ |F (qz)|2
∫

d3q′ Sm
MD(q)W (q− q′) + F∆(qz)

∫
d3q′ Sm

0,MD(q)W (q− q′).

(5.50)

|F (qz)|2 is well-known to be a slowly varying function of qz [76], and based on a model,

Appendix C.1 predicts that F∆(qz) is also a slowly varying function of qz.

Following the ideas of previous researchers [74, 75], the integrals in Eq. (5.50) are

expressed in real space by invoking the convolution theorem. Using the Sm
MD-dependent

integral as a sufficient example,

∫
d3q′ Sm

MD(q)W (q− q′) =

∫
d3R S̃m

MD(R)W̃ (R)eiq·R (5.51)

where the convolution theorem was used and S̃m
MD and W̃ (R) are the Fourier transforms

of Sm
MD and W (q), respectively. W̃ (R) is a peaked function and limits the longest length

scale correlations included in the calculation of IR(q). From this perspective, W̃ (R) has

been identified as defining a sample coherence volume [74, 75]. The rest of this Section is

devoted to a quantitative discussion of the sample coherence volume in real space.

The scattering from the sample is assumed to be the incoherent sum of scattering

from coherent subvolumes. On pp. 2746 of Ref. [74], the authors address the size of

a coherent sample volume:

“The coherence lengths can also be used to estimate the range of separation

between two points in the sample from which scattering can interfere. If

these points are separated by a distance ∆R, then the condition is that ∆R
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must be less than either both ξs/ sinα (where α is the angle between ∆R

and the incident beam direction) or and k0ξL/q0, where q0 is the component

of q along ∆R.”

The blue text indicates a different notation, and the red amendment to the original

text is motivated by an email correspondence in which Professor Sinha agreed that

∆R ≤ Min

[
ξs

sinα
,
k0ξL

q0

]
, (5.52)

similar to the conclusion stated in [48]. Min[. . . ] returns the minimum value of its

arguments. Additionally, the same conclusion is declared in a recent publication

on which Professor Sinha is the first author [77]. ξs is not exactly the transverse

coherence length of the X-ray beam in the z-direction ξTz (see Fig. 5.2), but given

the typical experimental setup, the difference is negligible [74]. ξL is the longitudinal

coherence length of the beam. ∆R Eq. (5.52) is utilized to derive the size of a coherent

sample volume as a function of q, the incident angle of the incoming X-rays, and the

coherence lengths of the X-ray beam.

Transverse Sample Coherence Lengths

ω

ω

Figure 5.3: Scattering geometry for low angle scattering experiment. The unprimed
and primed coordinates are the lab centered and sample centered coordinates, re-
spectively. The sample is the green rectangle, and its supporting substrate has been
omitted.

The scattering geometry is depicted in Fig. 5.3. In the following derivation, the

primed coordinates are the sample centered coordinates, and the unprimed coordi-

nates represent the lab reference frame. During an experiment, the beam propagates
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in the ŷ-direction, and the sample is rotated about the x-axis. The incident wavevec-

tor is ki = k0 ŷ. The transverse sample coherence regions are determined by the

relations,

∆Ryz ≤
ξTz

sinα
(5.53)

and

∆Rx ≤ ξTx, (5.54)

where ∆Ryz ≡ |Lyŷ′ + Lzẑ′| is a distance in the y′z′ plane, ∆Rx ≡ |Lxx̂′|, and α is

the angle between ∆R and the incident beam direction ŷ. Working towards a relation

for sinα,

∆Ryz · ŷ = ∆Ryz cosα, (5.55)

and also

∆Ryz · ŷ = Lyŷ′ · ŷ + Lzẑ′ · ŷ (5.56)

⇒ ∆Ryz cosα = Ly cosω − Lz sinω, (5.57)

where ω is the angle of incidence. Solving Eq. (5.57) for sinα,

sinα =

√
1−

(
Ly cosω − Lz sinω

∆Ryz

)2

. (5.58)

Using sinα Eq. (5.58) to rewrite ∆Ryz Eq. (5.53),
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∆Ryz ≤
ξTz

sinα
→
√

(∆Ryz)
2 − (Ly cosω − Lz sinω)2 ≤ ξTz (5.59)

⇒ Ly sinω + Lz cosω ≤ ξTz. (5.60)

For ω sufficiently small to use the small angle approximations of sine and cosine,

Lyω + Lz . ξTz. (5.61)

Lz is approximately ω-independent, and Ly is significantly extended for small ω.

Longitudinal Sample Coherence Lengths

The longitudinal sample coherence lengths are determined by the relation,

∆R ≤ k0ξ`
q0

. (5.62)

Let q = qxx̂
′ + qyŷ

′ + qzẑ
′. By definition q0 is the component of q parallel to ∆R,

q0 ≡ q · ∆R

∆R
(5.63)

=
|qxLx|+ |qyLy|+ |qzLz|

∆R
. (5.64)

Using q0 Eq. (5.64) to rewrite ∆R Eq. (5.62) in sample Cartesian coordinates,

∆R ≤ k0ξL

q0

(5.65)

≤ 2πξL

λ
∆R

(|qxLx|+ |qyLy|+ |qzLz|)
(5.66)

⇒ (|qxLx|+ |qyLy|+ |qzLz|) ≤
2πξL

λ
. (5.67)

The ξL-related cut-off lengths depend on the specific part of q-space probed.

Size of Coherent Sample Volume

The extent of a coherent sample volume is defined by,
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Lx ≤ ξTx (5.68)

Lyω + Lz . ξTz (5.69)

(|qxLx|+ |qyLy|+ |qzLz|) ≤
2πξL

λ
, (5.70)

summarizing previous conclusions. Eqs. (5.68)–(5.70) describe a volume with bound-

aries which are not perpendicular to the Cartesian axes. Additionally, the size of

the sample coherent volume in one direction is related to its size in the other two

directions.14

A xy-slice (constant z) of the sample coherence volume is shown in Fig. 5.4.

Typically, the extent of the coherence region in the y-direction is significantly greater

than in the x-direction since |qy| � |qx|. For

|qx| >
2

ξTx

(
πξL

λ
− |qzz|

)
, (5.71)

the xy coherence slice transitions from a hexagon to a parallelogram. A yz-slice

(constant x) of the sample coherence volume is shown in Fig. 5.5. Typically, the

extent of the coherence region in the y-direction is significantly greater than in the

z-direction since |qy| � |qz|. For

|qz| >
2

ξTz

(
πξL

λ
− |qxx|

)
, (5.72)

the yz coherence slice transitions from a octagon to a parallelogram.

14Eq. (5.70) provides a new insight regarding the “spikes” predicted by the currently implemented
X-ray scattering theory. The “spikes” are peaked features centered at 2πh/D that extend in the qx-
direction from the centers of the Caillé peaks, especially visible for h = 1, 2 (see [48] Figure 4.6, [44],
and Fig. 6.11 in this thesis). These “spikes” are not observed experimentally. The prediction of the
“spikes” is unusual because otherwise the scattering theory predicts increasingly broad features for
increasing qr or qz. Eq. (5.70) describes a systematic reduction of Lz as a function of increasing
Lx for finite qx and qz. In other words, for correlations between two points to be assessable, the
points can not be separated by both a large in-plane distance and many bilayers. The “spikes” may
be the result of simultaneously allowing both Lx and Lz to be large. Certainly, a narrow feature
along qz is impossible if correlations between only a few bilayers are considered. The “spikes” are
sufficiently weak in the typically analyzed qz-range (h > 2) that the aforementioned issue is not
further addressed.
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Figure 5.4: A xy-slice (constant z) of the coherence volume described by Eqs. (5.68)-
(5.70). The colored dashed lines correspond to the colored inequalities. The yellow
region satisfies all inequalities. Beyond a certain qx-value, the yellow region transitions
from a hexagon (left-hand side) to a parallelogram (right-hand side).

Figure 5.5: A yz-slice (constant x) of the coherence volume described by Eqs. (5.68)-
(5.70). The colored dashed lines correspond to the colored inequalities. The yellow
region satisfies both inequalities. Beyond a certain qz-value, the yellow region transi-
tion from a octagon (left-hand side) to a parallelogram (right-hand side).
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Making several assumptions, the boundaries of the sample coherence volume are

approximated. The X-ray scattering intensity is dominated by short length scale

correlations because the pair scattering correlation function decays as a power law

for increasing correlation distances, see Eq. (5.3). Therefore, as long as the coherent

volume is sufficiently large, the X-ray scattering intensity is fairly insensitive to ex-

actly where the boundaries are placed. More formally, the conditions for boundary

insensitivity are

Lx � ξ = 4
√
Kc/B

Ly � ξ

Lz � D.

(5.73)

Typical values of ξ (the in-plane correlation length) and D are about 50 Å and 60 Å,

respectively.15 Since the relations in Eq. (5.73) are true for the experiments in ques-

tion, interdependence of various coherent volume sizes is neglected, and Eqs. (5.68)

- (5.70) are approximated by

Lx(qx) ≈ Min

[
ξTx,

2πξL

|qx|λ

]
Ly(qy, ω) ≈ Min

[
ξTz

ω
,
2πξL

|qy|λ

]
Lz(qz) ≈ Min

[
ξTz,

2πξL

|qz|λ

]
.

(5.74)

The relations in (5.74) overestimate the size of the sample coherence volume. For

common experimental and data analysis parameter values summarized in Table 5.1,

the equations in (5.74) are simplified,

Lx ≈ ξTx (5.75)

Ly & ξTz (5.76)

Lz(qz) ≈ Min

[
ξTz,

2πξL

qzλ

]
. (5.77)

15Following simply from the relation between real- and reciprocal-spaces, the scattering at small
q is dependent on the longest length scale correlations in a sample. Consequently for sufficiently
small q, the measured scattering intensity is sensitive to the detailed shape of the sample coherence
volume. Therefore, the present analysis is restricted to qx & 2π/Lx.
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Table 5.1: Typical experimental parameter values and ranges of q for analysis.

parameter [units] value

λ [Å] 1.2

ξTx [Å] 6000

ξTz [Å] 6000

ξL [Å] 60

ω [◦] 0 ↔ 11

ξ [Å] 60

|qx| [Å−1] 0.01 ↔ 0.3

|qy| [Å−1] 0 ↔ 0.1

qz [Å−1] 0.2 ↔ 1.0

For qx > (2πξL) / (ξTzλ), Eq. (5.75) overestimates Lx. In Eq. (5.76) the qy-dependence

of Ly was neglected since qy is always small, see Section 5.3.5 for a discussion of exper-

imentally assessed qy-values. Since Lx � ξ and Ly � ξ, the details of the coherence

volume boundary are not too important, and therefore, the coherence volume is ap-

proximated as a cylinder with diameter Lr ≡ Min [Lx,Ly] and height Lz(qz).
Having completed the sample coherence volume derivation, the characteristic in-

and out-of-plane subvolume sizes can be quantitatively determined, see Sections 5.1.1

and 5.1.2. Using the derived sample coherence lengths, Eqs. (5.75), (5.76), and (5.77),

Lr = Min [Lr,Lr] (5.78)

= Min [Lr,Lx,Ly]

≈ Min [Lr, ξTx, ξTz] (5.79)

and

Lz(qz) = Min [Lz,Lz(qz)] (5.80)

= Min

[
Lz,Min

[
ξTz,

2πξL

qzλ

]]
= Min

[
Lz, ξTz,

2πξL

qzλ

]
, (5.81)
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where Lr and Lz are characteristic sample domain sizes, independent of the sample

coherence volume. Given the dependencies of Eqs. (5.79) and (5.81), the sample

subvolume distributions are more specifically written Pr(Lr) and Pz(Lz, qz). Note,

the functional forms of the distribution functions are assumed to be independent of

the domain size and the beam’s coherence lengths.

5.3.3 Beam Size Effects

X-rays scattered from different parts of the beam’s footprint on the sample strike the

detector at different places and can have the same value of q, see Fig. 5.6. Therefore,

a particular point on the CCD samples a range of q-values. First, the beam’s shape

on the detector is derived as a function of the experimental geometry. Then, the

effect of the beam’s shape on the measured intensity is discussed.

Projection of Beam-sample Footprint on Detector

Fig. 5.6 shows the scattering geometry with details concerning the beam and its

footprint on the sample. The center of the sample is the origin of the lab Cartesian

coordinate system, and the detector is described by a plane a distance s (in pixels)

away along the ŷ-direction, y = s. The beam height bz is chosen such that bz >

Ls sinωmax, where ωmax is the maximum incident angle and Ls is the width of the

sample. For typical values of Ls = 5 mm and ωmax ≈ 11◦, Ls sinωmax ≈ 0.95 mm and

bz ≈ 1 mm. Therefore, for all ω, only part of the beam is incident on the sample;

some of the beam is above or below the sample.

Fig. 5.7 shows two different perspectives of Fig. 5.6. Importantly, the vertices of

the beam-sample footprint are defined v1 through v4,

v1 =
(
−bx

2
, −Ls

2
cosω, −Ls

2
sinω

)
v2 =

(
−bx

2
,

Ls

2
cosω,

Ls

2
sinω,

)
v3 =

( bx
2
,

Ls

2
cosω,

Ls

2
sinω,

)
v4 =

( bx
2
, −Ls

2
cosω, −Ls

2
sinω,

)
,

(5.82)

where bx is the width of the beam. The beam shape on the detector is a parallel

projection of the beam-sample footprint which maps vi to Vi that end on the detector



Chapter 5. Predicted Experimental Scattering Intensity 87

bz

bx

ω

(px, pz)
y = s

Ls

Figure 5.6: Scattering geometry for a low angle scattering experiment with details
concerning the beam. The substrate is depicted by the dark gray rectangular cuboid,
and the sample is the darker green rectangle. The beam and beam path are shown
by the red rectangles and lines. The part of the beam that would pass under the
substrate is blocked by the sample holder (not depicted). The intersection of the
beam and the bare part of the substrate is red, and the intersection with the sample
is bright green. The edges of the scattered beam are shown by the gray lines. The
projection of the beam-sample footprint on the detector is also bright green. While
the beam-sample footprint is a rectangle, see Fig. 5.7, its projection on the detector
is a parallelogram, see Fig. 5.8.

Ls

bzω
v1

v2
v3

v4

bx

L
s
co

s
ω

Figure 5.7: Different perspectives of the scattering geometry depicted in Fig. 5.6. The
left-hand side shows a side view of the substrate (gray rectangle) and multilamellar
lipid bilayer sample (green rectangle). The thickness of the sample (10 µm) and
substrate (2 mm) are not drawn to scale. The right-hand side shows a top view of
the sample. The four white circles v1 though v4 label the vertices of the rectangular
beam footprint on the sample.
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y = s plane. Given a central pixel for the scattered beam on the detector (px, pz),

the direction of the parallel projection is along d = (pspx,S, pspz), where ps is the

size in millimeters of 1 pixel, 0.07113 mm/pixel for the FLIcam, and S ≡ pss. Vi is

expressed by

Vi = vi + td (5.83)

= (vix + tpspx, viy + tS, viz + tpspz) , (5.84)

where t is a scalar determined by requiring that Vi ends on the detector,

Viy = viy + tS = S (5.85)

⇒ t = 1− viy
S
. (5.86)

The parallel projection is compactly expressed as a matrix equation,

Ppṽ
T
i = ṼT, (5.87)

where ṽ indicates v expressed in homogeneous coordinates, v = (vx, vy, vz) → ṽ =

(vx, vy, vz, 1) and

Pp ≡


1 −px/s 0 px

0 0 0 s

0 −pz/s 1 pz

0 0 0 1

 . (5.88)

Using Eqs. (5.82) and (5.87) and converting back to standard Cartesian coordinates

from homogeneous coordinates
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V1 =
(
−bx

2
+ pspx +

pxLs

2s
cosω, S, −Ls

2
sinω + pspz +

pzLs

2s
cosω

)
V2 =

(
−bx

2
+ pspx −

pxLs

2s
cosω, S, Ls

2
sinω + pspz −

pzLs

2s
cosω

)
V3 =

( bx
2

+ pspx −
pxLs

2s
cosω, S, Ls

2
sinω + pspz −

pzLs

2s
cosω

)
V4 =

( bx
2

+ pspx +
pxLs

2s
cosω, S, −Ls

2
sinω + pspz +

pzLs

2s
cosω

)
.

(5.89)

b′z

b′x

V2

V1 V4

V3

pz

px

(px, pz)

Figure 5.8: The beam-sample footprint projected onto the detector is depicted by the
green parallelogram.

All Vi in Eq. (5.89) end on the detector since Vi,y = S, and the ends of Vi describe

a parallelogram, see Fig. 5.8. Approximating the parallelogram as a rectangle, the

width and height of the projected beam on the detector are

b′x(px) ≡ V4x − V2x (5.90)

= bx +
pxLs

s
cosω

≈ bx +
pxLs

s
(5.91)

and for pz > s tanω
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b′z(pz, ω) ≡ V4z − V3z (5.92)

=
pzLs

s
cosω − Ls sinω

≈ pzLs

s
− Lsω (5.93)

respectively, using ω ≥ 0◦. For given pz, the maximum value of ω before the substrate

blocks the scattering from the sample is

ωC(pz) ≡ tan−1(pz/s) (5.94)

(see Fig. 5.11), and therefore b′z ≥ 0. b′x(px) Eq. (5.91) and b′z(pz, ω) Eq. (5.93)

are plotted in Figs. 5.9 and 5.10, respectively. Previously, the geometric broaden-

ing in the px-direction was assumed to be constant (independent of px), and only

the pz dependence of the vertical geometric broadening was considered (not the ω-

dependence) [48]. Now, the geometric broadening is dependent on px, pz, and ω.

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
3

4

5

6

7

b′ x
[p

ix
el

s]

px

Figure 5.9: b′x(px) Eq. (5.91) is plotted for bx = 3 pixels, Ls = 5 mm, and s = (365
mm) /(0.07113 mm/pixel). b′x increases by about a factor of 2 in the px range of
interest.
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Figure 5.10: b′z(pz, ω) Eq. (5.93) is plotted for Ls = 5 mm and s ≈ 5131 pixels.
The triangular (ω, pz)-region patterned with red diagonal lines is not experimentally
accessible because the substrate blocks the outgoing scattering, see Fig. 5.11. The
cyan line indicates the pz position of the specular scattering as a function of ω,
pz = s tan (2ω). The boundary between grayscale and diagonally patterned lines is
described by pz = s tanω. For fixed ω, b′z significantly increases as a function of pz.
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Measured Intensity Considering Beam Size: IBCCD

Using b′x(px) Eq. (5.91) and b′z(pz, ω) Eq. (5.93), the beam projected onto the detector

with central pixel (px, pz) is modeled as a product of two Gaussians,

B (p̃x, px, p̃z, pz, ω) ≡ Bx (p̃x, px)Bz (p̃z, pz, ω) , (5.95)

where

Bx (p̃x, px) ≡
1√

2πσ2
x(px)

exp

{
−(px − p̃x)2

2σ2
x(px)

}
(5.96)

Bz (p̃z, pz, ω) ≡ 1√
2πσ2

z(pz, ω)
exp

{
− (pz − p̃z)2

2σ2
z(pz, ω)

}
(5.97)

σx(px) ≡
b′x(px)

Υps

(5.98)

σz(pz, ω) ≡ b′z(pz, ω)

Υps

, (5.99)

where

Υ ≡ 2
√

2 ln 2 ≈ 2.3548 (5.100)

converts from the full-width half maximum (FWHM) of a Gaussian to one standard

deviation. Using B Eq. (5.95) the theoretical scattering intensity on the detector

IB
CCD is

IB
CCD(px, pz, ω) ≡

∫
dp̃x Bx(p̃x, px)

∫
dp̃z Bz(p̃z, pz, ω)Im(p̃x, p̃z, ω). (5.101)

Im is the predicted scattering intensity considering mosaicity, see Section 5.2.

Since the scattering theory is more conveniently expressed in terms of q, IB
CCD

Eq. (5.101) is rewritten. For small 2θ and ω, qz (qx) is approximately linear in pz

(px), see Eqs. (5.42) and (5.44), and therefore, Eq. (5.101) is approximately expressed

as
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IB
CCD(px, pz, ω) ≈ IB

CCD(qx, qz, ω) (5.102)

=

(
λs

2π

)2 ∫
dq̃x Bx(q̃x, qx)

∫
dq̃z Bz(q̃z, qz, ω)Im [q̃x, qy(q̃x, q̃z, ω), q̃z] ,

(5.103)

where

Bx (q̃x, qx) ≡
1√

2πσ̃2
x(qx)

exp

{
−(qx − q̃x)2

2σ̃2
x(qx)

}
(5.104)

Bz (q̃z, qz, ω) ≡ 1√
2πσ̃2

z(qz, ω)
exp

{
− (qz − q̃z)2

2σ̃2
z(qz, ω)

}
(5.105)

σ̃x(qx) ≡
1

ΥS

(
2π

λ
bx + Lsqx

)
(5.106)

σ̃z(qz, ω) ≡ Ls

ΥS

(
qz −

2π

λ
ω

)
(5.107)

qy(qx, qz, ω) ≈ − λ

4π

(
q2
x + q2

z

)
+ qzω. (5.108)

Eq. (5.108) is the result of substituting Eqs. (5.42) and (5.44) into Eq. (5.43). Since

the intensity is not measured on an absolute scale, the prefactor in Eq. (5.103) is

neglected.

Following the numerical analysis of the tilt-independent theory [48], the q̃z-dependent

integral is completed analytically assuming that |F (qz)|2 is locally constant on the

scale of the beam height. The effect of beam shape on the scattering intensity is

evaluated using Sm
MD Eq. (5.28). By analogy, the result for F∆(qz)S

m
0,MD(q) Eq. (5.28)

is deduced at the end, see Eq. (5.118).

Substituting Sm
MD(q), see Eqs. (5.28) and (5.14), into IB

CCD Eq. (5.103),
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IB
CCD,1(qx, qz, ω)

≈
∫

dq̃x Bx(q̃x, qx)

∫
dq̃z Bz(q̃z, qz, ω) |F (q̃z)|2 Sm

MD(q̃) (5.109)

=

∞∑′

j=0

∫
dr

∫ ∞
−∞

dq̃x Bx(q̃x, qx)rHr(r)·∫ ∞
−∞

dq̃z Bz(q̃z, qz, ω) |F (q̃z)|2 Jm(q̃rr)Hz(jD, q̃z) cos (jDq̃z) e
− q̃

2
z
2
hj(ρ,`,τ), (5.110)

where

q̃r(q̃x, q̃z, ω) =
√
q̃2
x + q2

y (q̃x, q̃z, ω) (5.111)

and

Jm(q̃rr) ≡
[
J0(qrr) ∗ Pm(qr)

]
(q̃r). (5.112)

Since Bz is narrow in q̃z compared to Hz(jD, q̃z), |F (q̃z)|2, and qy(q̃x, q̃z, ω), the q̃-

dependence of the aforementioned functions is replaced by qz,

IB
CCD,1(qx, qz, ω) ≈ |F (qz)|2

∞∑′

j=0

∫
dr T1 (r, j, ω, qx, qz) ·

Re

[∫ ∞
−∞

dq̃z Bz(q̃z, qz, ω)eijDq̃ze−
q̃2z
2
hj(ρ,`,τ)

]
, (5.113)

where Re[. . . ] returns the real part of its argument and

T1(r, j, ω, qx, qz) ≡
∫ ∞
−∞

dq̃x Bx(q̃x, qx)rHr(r)Jm

(√
q̃2
x + q2

y(q̃x, qz, ω) r
)
Hz(jD, qz).

(5.114)

Completing the q̃z-dependent integral in Eq. (5.113) analytically,
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T2(ρ, `, τ, j, ω, qz) ≡ Re

[
1√

2πσ̃2
z(qz, ω)

∫ ∞
−∞

dq̃z e
ijDq̃ze−

q̃2z
2
hj(ρ,`,τ)e

− (qz−q̃z)2

2σ̃2
z(qz,ω)

]
(5.115)

=
1√

1 + hjσ̃2
z

exp

{
−q2

zhj − j2D2σ̃2
z

2 (1 + hjσ̃2
z)

}
cos

(
qzjD

1 + hjσ̃2
z

)
. (5.116)

Substituting T2 Eq. (5.116) into IB
CCD,1 Eq. (5.113)

IB
CCD,1(qx, qz, ω) ≈ |F (qz)|2

∞∑′

j=0

∫
dr T1(r, j, ω, qx, qz)T2(ρ, `, τ, j, ω, qz). (5.117)

The analogous result to IB
CCD,1 Eq. (5.117) involving F∆(qz)S

m
0,MD(q) is

IB
CCD,2(qx, qz, ω) ≈ F∆(qz)

∞∑
j

δj,0

∫
dr T1(r, j, ω, qx, qz)T2(ρ, `, τ, j, ω, qz). (5.118)

5.3.4 Absorption Correction

Incident and scattered X-rays are attenuated by the sample. Also, scattering to

different parts of the detector travel different path lengths within the sample. An

absorption correction for low angle scattering as a function of pz and ω has been

previously derived [50]. The px-dependence is neglected since the X-ray path within

the sample is nearly in the yz-plane for low angle scattering.

The absorption factor is, see Eq. (28) in [50],

A(ω, pz) ≡
µ

ts

1− exp
{
− ts

µ
g(ω, pz)

}
g(ω, pz)

, (5.119)

where

g(ω, pz) ≡
1

sinω
+

1

sin [tan−1(pz/s)− ω]
, (5.120)

µ is the X-ray absorption length in the sample, and ts is the sample thickness. Using

IB
CCD,1 Eq. (5.117) and IB

CCD,2 Eq. (5.118), the prediction for a fixed angle exposure is
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IA
CCD(qx, qz, ω) ≡ A[ω, pz(qx, qz, ω)]

[
IB

CCD,1(qx, qz, ω) + IB
CCD,2(qx, qz, ω)

]
. (5.121)

5.3.5 CCD Integral

During an X-ray exposure, the incident angle ω was continuously varied by rotating

the sample. The aforementioned effect is quantified by integrating the predicted fixed

angle intensity IA
CCD Eq. (5.121) over the appropriate ω-values to give the final (F)

theoretical intensity on the CCD,

IF
CCD(px, pz) ≡

∫ ωC(pz)

0

dω IA
CCD(px, pz, ω), (5.122)

where 0 and ωC(pz) are the minimum and maximum incident angle, respectively, for

which scattering from the sample to a given pz-height on the detector is not blocked

by the substrate, see Fig. 5.11,

ωC(pz) ≡ tan−1
(pz
s

)
. (5.123)

z

xy
pz

S ω

Figure 5.11: Scattering geometry describing the maximum substrate rotation angle
ω before scattering from the sample (green rectangle) at pixel pz is blocked by the
substrate (gray rectangle). The red solid and dashed lines show the beam path
without a sample. The thickness of the sample (10 µm) and substrate (1 mm) are
not drawn to scale.

As written, IF
CCD Eq. (5.122) is awkward to calculate since the scattering intensity

is more conveniently expressed in terms of q. In the following derivation, the right-

hand side of Eq. (5.122) is written and evaluated as a function of q. In order to
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proceed, several approximations regarding the transformation between (px, pz, ω) and

(qx, qy, qz) are discussed.

Eqs. (5.38), (5.39), and (5.40) describe the relationship between (px, pz, ω) and

(qx, qy, qz) and are reproduced below for convenience:

qx(px, pz) =
2πpx
λs

1√
δ(px, pz)

(5.124)

qy(px, pz, ω) =
2π

λ

[(
1√

δ(px, pz)
− 1

)
cosω +

pz sinω

s

1√
δ(px, pz)

]
(5.125)

qz(px, pz, ω) =
2π

λ

[(
1− 1√

δ(px, pz)

)
sinω +

pz cosω

s

1√
δ(px, pz)

]
. (5.126)

For a given pixel coordinate (px, pz), varying ω describes a q-space trajectory which

is a function of qy and qz in a plane of constant qx. I
F
CCD in Eq. (5.122) is expressed

as

IF
CCD(px, pz) =

∫ ωC(pz)

0

dω IA
CCD [qx(px, pz), qz(px, pz, ω), ω] . (5.127)

The px- and ω-dependences of qz complicate the evaluation of Eq. (5.127). There-

fore, qz(px, pz, ω) is approximated,16

qz(px, pz, ω) ≈ q∗z(pz) ≡
4π

λ
sin

[
1

2
tan−1

(pz
s

)]
(5.128)

= qz[0, pz, ωC(pz)/2]. (5.129)

To establish the approximation in Eq. (5.128),

q‡z(px, pz, ω) ≡ qz(px, pz, ω)− q∗z(pz) (5.130)

is plotted in Figs. 5.12 and 5.13 for px = 0 and px = 300, respectively. The narrowest

16Eq. (5.128) is further modified to correct for the difference in index of refraction between air
and lipids following an Appendix in [48], but this makes negligible difference for the range qz >
0.2 Å−1 typically analyzed.
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qz features are the Caillé peaks on the meridian (px = 0) whose FWHM increase with

increasing peak index [41, 42, 43]. The first peak width can be less than 5×10−3 Å−1,

depending on the sample properties and the coherence of the incident beam, but

higher index peaks are considerably broader. For reference, the height of 1 pixel is

about 2π/(λs) ≈ 10−3 Å−1, given the typical experimental geometry. q∗z is a worse

approximation for increasing px (see Fig. 5.13), but no narrow qz features for large px

and pz are predicted. Therefore, q∗z(pz) is an adequate approximation for qz(px, pz, ω)

since |q‡z| . 1 × 10−3 Å−1 for px = 0 and pz . 600 which limits the pz-range for the

structure factor analysis.17
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Figure 5.12: q‡z(0, pz, ω) Eq. (5.130) is plotted for λ = 1.17 Å, ps = 0.07113 mm/pixel,
and S = 365 mm. The triangular (ω, pz)-region patterned with red diagonal lines is
not experimentally accessible because the substrate blocks the outgoing scattering.
The cyan line indicates the pz position of the specular scattering as a function of ω.

Substituting q∗z Eq. (5.128) into IF
CCD Eq. (5.127),

IF
CCD(px, pz) ≈

∫ ωC(pz)

0

dω IA
CCD

[
qx(px, pz), q

∗
z(pz), ω

]
. (5.131)

Eq. (5.131) is further approximated by neglecting the pz-dependence of qx(px, pz),

17For pz & 600, the measured |F (qz)|2 is an average over nearby |F (pz)|2-values.
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Figure 5.13: q‡z(300, pz, ω) Eq. (5.130) is plotted for λ = 1.17 Å, ps = 0.07113
mm/pixel, and S = 365 mm.

IF
CCD(px, pz) ≈

∫ ωC(qz)

0

dω IA
CCD [q∗x(px), q

∗
z(pz), ω] , (5.132)

where

q∗x(px) ≡
2π

λ
sin
[
tan−1

(px
s

)]
. (5.133)

In Fig. 5.14,

q‡x(px, pz) ≡ qx(px, pz)− q∗x(px) (5.134)

is plotted.
∣∣q‡x(px, pz)∣∣ varies by less than 6 × 10−3 Å−1. Note that a difference of 1

pixel corresponds to a change in qx of about 10−3 Å−1. Since no narrow qx features

away from px = 0 are predicted, q∗x is a reasonable approximation.
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Figure 5.14: q‡x(px, pz) Eq. (5.134) is plotted for λ = 1.17 Å, ps = 0.07113 mm/pixel,
and S = 365 mm. qx(px, pz) is better approximated by q∗x(px) for px = 0 as compared
to px = 300.
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5.4 Calculating the Final Structure Factor

Substituting IA
CCD Eq. (5.121) into IF

CCD Eq. (5.132) yields a final relation for the

scattering intensity,

IF
CCD(px, pz) ≈ IF

CCD,1[q∗x(px), q
∗
z(pz)] + IF

CCD,2[q∗x(px), q
∗
z(pz)] (5.135)

where

IF
CCD,1(qx, qz) = |F (qz)|2

∫ ωC

0

dω A(ω, qz)

∫ ∞
−∞

dq̃x
exp

{
− (q̃x−qx)2

2σ̃2
x(qx)

}
√

2πσ̃2
x(qx)

·∫ ∞
0

dr rHr(r)Jm

(√
q̃2
x + q2

y(q̃x, qz, ω) r
)
·

∞∑′

j=0

Hz(jD, qz)√
1 + hjσ̃2

z

exp

{
−q2

zhj − j2D2σ̃2
z

2 (1 + hjσ̃2
z)

}
cos

(
qzjD

1 + hjσ̃2
z

)
(5.136)

and IF
CCD,2(qx, qz) follows by analogy from Eq. (5.136), replacing |F (qz)|2 by F∆(qz)

and introducing δj 0 after
∑′

. Note, the dependences of several functions were not

written explicitly in Eq. (5.136): hj(ρ, `, τ), σ̃z(qz, ω), and ωC(pz).

To further simplify the calculation of IF
CCD, σ̃z(qz, ω) is approximated,

σ̃z(qz, ω) ≈ σ̃∗z [qz, ωC(qz)/2] . (5.137)

σ̃∗z = σ̃z for scattering along the meridian (qr = 0) so the qz heights of the Caillé

peaks are correctly broadened within the aforementioned approximation. For pixels

off the meridian, the correct geometrically broadened beam height is a function of

ω. Because a particular (qx, qz) pair is accessible for an increasingly large range of

ω-values for increasing qx, σ̃
∗
z is an increasingly poor approximation for increasing qx.

Nevertheless, σ̃∗z is reasonable since no narrow qz features far from the meridian are

predicted.

Additionally, the ω-dependent integral is rewritten in terms of qy to more easily

interface with previous work [48]. Differentiating qy(qx, qy, ω) Eq. (5.108) with respect
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to ω,

∂qy
∂ω

= qz (5.138)

⇒ ∂ω =
∂qy
qz
. (5.139)

The factor of qz in the denominator of Eq. (5.139) is the standard Lorentz factor for

oriented samples. Substituting Eq. (5.139) into IF
CCD,1 Eq. (5.136),

IF
CCD,1(qx, qz) =

|F (qz)|2

qz

∫ qy,ub

qy,lb

dqy A[ω(qx, qy, qz), qz]

∫ ∞
−∞

dq̃x
exp

{
− (q̃x−qx)2

2σ̃2
x(qx)

}
√

2πσ̃2
x(qx)

·∫ ∞
0

dr rHr(r)Jm

(√
q̃2
x + q2

y r
)
·

∞∑′

j=0

Hz(jD, qz)√
1 + hjσ̃2

z

exp

{
−q2

zhj − j2D2σ̃2
z

2 (1 + hjσ̃2
z)

}
cos

(
qzjD

1 + hjσ̃2
z

)
(5.140)

where

ω(qx, qy, qz) ≈
1

qz

[
qy +

λ

4π

(
q2
x + q2

z

)]
, (5.141)

qy,lb(qx, qz) ≡ −
λ

4π

(
q2
x + q2

z

)
, (5.142)

qy,ub(qx, qz) ≡ −
λ

4π

(
q2
x + q2

z

)
+ qzωC(qz), (5.143)

ωC(qz) ≈ tan−1

(
λqz
2π

)
, (5.144)

and again, IF
CCD,2(qx, qz) follows by analogy.

Previous work [48] neglected the qx-dependence of the qy-integration limits, as-

suming qz � qx. Fig. 5.15 shows the derived qy integration limits. For comparison,

the previous qx-independent integration limits would be horizontal lines in Fig. 5.15,

overlapping the depicted limits at qx = 0. The qy integration range increases for

increasing qz. Most importantly, the qy integration range does not include qy = 0

at sufficiently large qx. For instance, see the pair of solid black lines in Fig. 5.15.
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The qx-dependence of the CCD integral’s limits is emphasized when comparing the

predictions of structure factors expressed in Cartesian vs. cylindrical coordinates, see

Appendix B.
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Figure 5.15: The CCD integral qy-limits as a function of qx at various qz values (as
shown in the legend). The pairs of lines depict upper and lower limits. The red
dashed line is a guide to the eye to emphasize the qx-dependence.

IF
CCD,i are nontrivial to numerically evaluate because of the several nested integrals.

Following previous work [48], IF
CCD,1 is expressed in a more computationally convenient

form,

f1(ρ, qz) ≡
∞∑′

j=0

Hz(jD, qz)√
1 + hjσ̃∗2z

exp

{
−q

2
zhj + j2D2σ̃∗2z
2 (1 + hjσ̃∗2z )

}
cos

(
qzjD

1 + hjσ̃∗2z

)
(5.145)

f2(qr, qz) ≡
∫ ∞

0

dr rHr(r)Jm(qrr)f1(ρ, qz) (5.146)

f3(qx, qz) ≡
∫ qy,ub

qy,lb

dqy A[ω(qx, qy, qz), qz] f2

(√
q2
x + q2

y, qz

)
(5.147)

IF
CCD,1(qx, qz) ≈

|F (qz)|2

qz

∫ ∞
−∞

dq̃x
exp

{
− (q̃x−qx)2

2σ̃2
x(qx)

}
√

2πσ̃2
x(qx)

f3 (q̃x, qz) (5.148)

≡ |F (qz|2

qz
SF

CCD,1(qx, qz). (5.149)
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In turn, each fi is evaluated and the results tabled to be later interpolated when

evaluating fi+1. The aforementioned methodology significantly reduces the number

of times f1, f2, and f3 are evaluated as compared to a naive evaluation of IF
CCD,1

Eq. (5.136). For similar equations derived and used in previous work, see the Section

“Cache the curves” pp. 65-66 in Dr. Liu’s thesis [48]. Note, if |F (qz)|2 is replaced by

F∆(qz) and δj 0 is introduced after
∑′

, the resulting modified fi efficiently calculate

IF
CCD,2,

f ′1(ρ, qz) ≡
∞∑′

j=0

δj 0
Hz(jD, qz)√

1 + hjσ̃∗2z
exp

{
−q

2
zhj + j2D2σ̃∗2z
2 (1 + hjσ̃∗2z )

}
cos

(
qzjD

1 + hjσ̃∗2z

)
(5.150)

IF
CCD,2(qx, qz) ≡

F∆(qz)

qz
SF

CCD,2(qx, qz). (5.151)

The theoretical prediction for the measured scattering intensity is

IF
CCD [qx(px), qz(pz)] =

|F (qz)|2

qz
SF

CCD,1(qx, qz) +
F∆(qz)

qz
SF

CCD,2(qx, qz) (5.152)

= Im (px, pz)− c(pz), (5.153)

where Im(px, pz) is the measured scattering intensity and c(pz) models remaining

background scattering. The approximate relations between q-space and CCD-space

were presented earlier, see Eq. (5.128) and Eq. (5.133). While predictions for SF
CCD,1

and SF
CCD,2 have been derived, both F (qz) and F∆(qz) are unknown functions, if

possible determined by analyzing data.



Chapter 6

Survey of Predicted Structure

Factors

Before fitting measured scattering intensity, many attributes of the experimental

structure factors, SF
CCD,1 Eq. (5.149) and SF

CCD,2 Eq. (5.151), are highlighted in an

effort to reduce the number of model parameters and constrain parameter values.

SF
CCD,1 and SF

CCD,2 are functions of many parameters, see Table 6.1 for typical values.

Except for {Kc, B, Kθ, Lr, Lz, a}, all other parameter values are either known a pri-

ori or evaluated prior to the structure factor analysis. {Kc, B, Lr, Lz} are familiar

from the tilt-independent model [48]; {Kθ, a} are new parameters.

First, the sensitivity of SF
CCD,1 to the six primary structure factor parameters {Kc,

B, Kθ, Lr, Lz, a} is established in Section 6.1. Anticipating later results, SF
CCD,2 is

ignored and only exponential subvolume distribution functions are considered. The

moduli Kc, Kθ, and B are the primary material descriptors of the model stacked

membrane system. In Section 6.1.1, it is shown that each modulus affects SF
CCD,1

significantly and differently, and therefore, it is plausible that all three moduli can

be determined by fitting experimental data. Lr and Lz are characteristic domain

dimensions, and in Sections 6.1.2 and 6.1.3, SF
CCD,1 is shown to be fairly insensitive to

values of both Lr and Lz in the chosen fitting region. The a parameter limits short

in-plane correlations, and SF
CCD,1 as a function of a is discussed in Section 6.1.4.

Gaussian and exponential subvolume distributions are compared in Section 6.2. It

is established that the two functions predict similar SF
CCD,1, and therefore, to minimize

the number of model parameters, exponential distributions are employed. Then in

Section 6.3, the extent to which finite sized domains are quantitatively described by

105
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the derived infinite sized domain height-height correlation function is investigated,

and minimum reasonable values of Lr and Lz are forwarded. Finally, SF
CCD,1 and

SF
CCD,2 are compared in Section 6.4.

The relevant regions of SF
CCD,1(qx, qz) and SF

CCD,2(qx, qz) are determined by the

the measured and analyzed qx, qz-regions. Fig. 6.1 shows a typical detector expo-

sure and corresponding commonly analyzed qx, qz-region (0.01 . qx . 0.22 Å−1 and

0.3 . qz . 0.6 Å−1). The analyzed qx, qz-region is primarily dictated by where the

measured intensity is significant.18 The lower bound of the qx-range is greater than

zero for several reasons. First, the predicted scattering intensity neglects the specular

scattering from the substrate, known to be significant near qx = 0 along qz. Second,

the predicted scattering intensity is increasingly dependent on long length scale phe-

nomena for decreasing |qx|. The measured and predicted intensity are compared over

a qx-range which will be shown to be sensitive to the most important parameters {Kc,

B, Kθ} and nearly insensitive to the less important long length scale parameters {Lr,

Lz}.
Unless otherwise stated, the parameter values used to plot SF

CCD,1 and SF
CCD,2

in this chapter are listed in Table 6.1. Since |F (qz)|2 and F∆(qz) are unknown,

SF
CCD,1(qx, qz) parameter values are primarily determined by the qx-dependence of

SF
CCD,1. Therefore, SF

CCD,1 is often plotted as a function of qx for several representa-

tive qz-values, and these curves are normalized at qx = 0.01 Å−1 to emphasize the

qx-dependence for larger qx. Fig. 6.2 shows SF
CCD,1 for the parameter values listed

in Table 6.1. Because of the out-of-plane periodicity of the stacked bilayer sam-

ple, SF
CCD,1 for qx = 0 is a local maximum at qz = 2πh/D and a local minimum

near qz = 2π
(
h+ 1

2

)
/D, where the whole number h indexes the peaks. SF

CCD,1 as a

function of qx is often plotted at qz-values that correspond to the h = 3 peak and

halfway between the h = 3 and h = 4 peaks (0.3 Å−1 and 0.35 Å−1, respectively,

for D = 20π Å). These qz-values are representative in the sense that they are the

center (2πh/D) and boundary (2π
(
h+ 1

2

)
/D) of a Brillouin Zone. Additionally,

qz = 0.3 Å−1 and 0.35 Å−1 correspond to the most intense data within the commonly

analyzed region.

18The bilayer scattering for qz . 0.2 Å−1 is known to be strong but is not commonly analyzed
because of outstanding issues [48].
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Figure 6.1: The background subtracted scattering intensity from a stack of DOPC
bilayers is shown. The beam stop covers the region defined by qz . 0.2 Å−1 and
qx . 0.08 Å−1. Intensity is indicated by the linear grayscale. The red pixels indicate
intensity less than zero. The predicted theoretical intensity is fitted to measured data
within the cyan rectangle (0.01 . qx . 0.22 Å−1 and 0.3 . qz . 0.6 Å−1). This
chapter demonstrates why these are the data that are fitted to obtain mechanical
moduli.
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Table 6.1: Default parameter values used to calculate examples of SF
CCD,1 and SF

CCD,2

parameter [units] value description
p
ri

m
ar

y
m

o
d
el

Kc [ergs] 8× 10−13 bending modulus

B [ergs/cm4] 1× 1013 bulk modulus

Kθ [mN/m] 95 tilt modulus

Lr [Å] 5000 characteristic domain diameter

Lz [Å] 10D characteristic domain height

a [Å] 12 shortest in-plane length

sa
m

p
le

D [Å] 62.8 out-of-plane repeat distance

T [◦C] 30 temperature

Ls [mm] 5 sample length along beam

ts [µm] 10 sample thickness

γm [◦] 0 FWHM of mosaicity distribution

µ [mm] 2.6 1/e X-ray absorption length in sample

ε 0.999998 index of refraction

ex
p

er
im

en
ta

l

λ [Å] 1.175 X-ray wavelength

S [mm] 360 sample to detector distance

ps [mm/pixel] 0.07113 pixel size

bx [pixels] 2.3 beam width on CCD in x-direction

∆λ/λ 0.0134 energy dispersion

∆γx 1× 10−4 beam angular divergence in x-direction

∆γz 1× 10−4 beam angular divergence in z-direction

co
h
er

en
ce ξTx [Å] 6000 transverse beam coherence along x̂

ξTz [Å] 6000 transverse beam coherence along ẑ

ξL [Å] 44 longitudinal beam coherence
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Figure 6.2: SF
CCD,1 is shown using a logarithmic grayscale for the parameter values in

Table 6.1. The peaks along qz centered at qx = 0 correspond to the repeat out-of-plane
distance. The peaks are decreasingly apparent for increasing qz primarily because of
bilayer midplane fluctuations. For constant qz, S

F
CCD,1 decays for increasing |qx|.
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6.1 Primary Structure Factor Parameters

First in Section 6.1.1, SF
CCD,1(qx, qz) is investigated as a function of varying the values

of Kc, B, and Kθ. Then in Sections 6.1.2 and 6.1.3, the sensitivity of SF
CCD,1 on the

values of the characteristic sample domain lengths Lr and Lz is demonstrated.

6.1.1 Kc, B, and Kθ

Fig. 6.3 shows SF
CCD,1(qx, qz) as a function of qx for various values of Kc. As Kc in-

creases, SF
CCD,1 monotonically decreases for all nonzero qx-values. For qz = 2π

(
h+ 1

2

)
/D,

SF
CCD,1 decays less rapidly than when qz = 2πh/D or qz = 2π(h+ 1)/D [44].
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Figure 6.3: SF
CCD,1 is plotted as a function of qx for various Kc-values. The curves

have been normalized at qx = 0.01 Å−1, and additionally, the solid lines are vertically
offset by 10−1 to improve visibility. See Table 6.1 for parameter values.

Fig. 6.4 shows SF
CCD,1 as a function of qx for various values of B. For qz = 0.3 Å−1,

increasing B affects SF
CCD,1 similarly to increasing Kc in Fig. 6.3. However, increasing

B increases SF
CCD,1 for qz = 0.35 Å−1 (see Fig. 6.4), opposite to the effect of increasing

Kc. Therefore, values of both Kc and B are determined by fitting the experimental

data as a function of both qx and qz, as was emphasized in earlier work [44].
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Figure 6.4: SF
CCD,1 is plotted as a function of qx for various B-values. The curves have

been normalized at qx = 0.01 Å−1, and the solid lines are vertically offset by 10−1.

Fig. 6.5 shows SF
CCD,1 as a function of qx for various values of Kθ. The Kθ = ∞

curve is the tilt-independent prediction. As Kθ increases, SF
CCD,1 more rapidly decays,

qualitatively similar to increasing Kc. Importantly, modifying Kθ primarily affects

SF
CCD,1 for qx > 0.05 Å−1 as expected since tilt is related to shorter length scales than

undulations. A tilt-dependent model is required to increase the predicted SF
CCD,1 at

larger qx without significantly altering SF
CCD,1 at smaller qx. Finally, since Kc, B, and

Kθ uniquely influence the experimental structure factor within the typically analyzed

qx, qz-region, the values of all three moduli should be quantifiable.
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Figure 6.5: SF
CCD,1 is plotted as a function of qx for various Kθ-values. The curves

have been normalized at qx = 0.01 Å−1.
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6.1.2 Lr

Lr was first introduced in Section 5.1 and describes the characteristic in-plane do-

main size. The value of Lr is compared to the appropriate beam coherence lengths

projected onto the sample {Lx,Ly} to determine the characteristic in-plane size Lr

of the subvolume distribution function, see Section 5.3.2,

Lr = Min [Lx,Ly,Lr]

≈ Min [ξTx, ξTz,Lr] . (6.1)

The values of ξTx and ξTz are known and related to the experimentally determined

beam angular divergence. In contrast, the value of Lr is unknown. Importantly given

Eq. (6.1), SF
CCD,1 is independent of Lr for all values of Lr greater than both ξTx and

ξTz; for the values listed in Table 6.1, the effective maximum of Lr is nearly the same

as ξTx = ξTz ≈ 6000 Å. Fig. 6.6 shows SF
CCD,1 as a function of qz for Lr = 600 Å and

Lr = ξTx. The curves become increasingly similar for increasing qx, comparing solid

(qx = 0 Å−1) and dashed (qx = 0.01 Å−1) lines. Fig. 6.7 shows SF
CCD,1 as a function

of qx at two qz-values. Lr is most influential at small qx and qz. For increasing Lr,

intensity is shifted towards qx = 0, making the peaks narrower in qx. In the typically

analyzed qx, qz-region, the precise value of Lr does not significantly affect SF
CCD,1.

Fitting results presented in Section 7.2 further address the extent to which Lr is a

necessary model parameter.
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Figure 6.6: SF
CCD,1(qx, qz) is plotted as a function of qx for Lr = 600 Å and Lr = ξTx ≈

6000 Å. The curves have been normalized at qz = 1 Å−1. Beyond qz ≈ 0.55 Å−1 the
curves continue to converge.
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Figure 6.7: SF
CCD,1(qx, qz) is plotted as a function of qx for Lr = 600 Åand 6000 Å. The

curves have been normalized at qx = 0.2 Å−1. The vertical gray dashed-dotted line
indicates the typical smallest analyzed qx-value, see Fig. 6.1. Beyond qx ≈ 0.1 Å−1 the
curves continue to converge.
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6.1.3 Lz

Lz was first introduced in Section 5.1 and describes the characteristic out-of-plane

domain size. The value of Lz is compared to the appropriate beam coherence lengths

projected onto the sample to determine the characteristic out-of-plane size Lz of the

subvolume distribution function, see Section 5.3.2,

Lz = Min

[
ξTz,

2πξL

qzλ
,Lz

]
. (6.2)

The values of ξTz and ξL are experimentally determined and are fixed input values

to the fitting program. However, the value of Lz is unknown. Importantly, given

Eq. (6.2) and the parameter values in Table 6.1, all Lz-values greater than about

800 Å are effectively equivalent, given the typical qz-range for structure factor analysis

(see Fig. 6.1).

Fig. 6.8 shows SF
CCD,1 as a function of qz for Lz = 400 Å and 800 Å. The curves

become increasingly similar for increasing qx, comparing solid (qx = 0 Å−1) and

dashed (qx = 0.01 Å−1) lines. Fig. 6.9 shows SF
CCD,1 as a function of qx for two qz-

values. Lz is most influential at small qx and qz; increasing Lz primarily narrows the

peaks in qz.

SF
CCD,1 as a function of qx is fairly insensitive to Lz in the commonly analyzed

qx, qz-region. To reduce the number of model parameters, the appropriate coherence

lengths, ξTz and ξL, can be assumed to determine the limiting out-of-plane correlation

lengths if Lz is fixed such that Lz > ξTz and Lz > (2πξL)/(qzλ). Within the

aforementioned procedure, Lz will be qz-dependent, varying monotonically from about

800 Å to 400 Å for 0.3 Å−1 . qz . 0.6 Å−1. In the commonly analyzed qx, qz-region,

the precise value of Lz does not significantly influence SF
CCD,1. The extent to which

Lz is a necessary model parameter is further evaluated by fitting the experimental

data, see Section 7.2.
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Figure 6.8: SF
CCD,1(qx, qz) is plotted as a function of qz for Lz = 400 Å and 800 Å.

The curves have been normalized at qz = 1 Å−1. Beyond qz ≈ 0.55 Å−1 the curves
continue to converge.
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[Å

]

0.3 0.35
qz [Å−1]
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Figure 6.9: SF
CCD,1(qx, qz) is plotted as a function of qz for Lz = 400 Å and 800 Å.

The curves have been normalized at qz = 0.2 Å−1. Beyond qx ≈ 0.1 Å−1 the curves
continue to converge.
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6.1.4 Minimum In-plane Length: a

π/a is the longest considered in-plane mode, see Eq. (3.70). Fig. 6.10 shows SF
CCD,1

as a function of qx for various values of a. For qx & π/a, SF
CCD,1 decays precipitously.

Since a finite qx-range is probed experimentally, only an upper bound on a can be

determined if a < π/qx,max, where qx,max is the maximum qx-value with analyzable

intensity. Typically, qx,max ≈ 0.2 Å−1, and therefore the smallest determinable value

of a is about 16 Å. For a . 16 Å, the precise value of a is of little concern for the

quantification of {Kc, B, Kθ, Lr, Lz} because in the qx-direction a only significantly

affects SF
CCD,1 for the largest typically analyzed qx-values.
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qx [Å−1]

S
F C

C
D

,1
[a

rb
.

sc
al

e]

Figure 6.10: SF
CCD,1 as a function of qx is plotted for various a-values. The curves

have been normalized at qx = 0.01 Å−1.

The more significant concern regarding the uncertainty in the value of a (∆a) is

its influence on |F (qz)|2, and consequently, the qz-dependence of SF
CCD,1 is explored

as a function of a. Commonly, |F (qz)|2 is determined using data between qx ≈
0.03 Å−1 and qx ≈ 0.13 Å−1 [48]. Therefore, SF

CCD,1 is plotted as a function of qz for

qx = 0.08 Å−1 (about 80 pixels from the meridian) in Fig. 6.11. For increasing a,

SF
CCD,1 increases more rapidly as a function of qz but only significantly so for larger
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qz. ∆a is of little concern for determining {Kc, B, Kθ, Lr, Lz} because a hardly

affects SF
CCD,1 for qz . 0.6 Å−1. However, since the product |F (qz)|2 SF

CCD,1(qx, qz) is

fixed by the measured scattering intensity, the uncertainty of SF
CCD,1 at higher qz due

to ∆a leads to uncertainty in |F |2.

The uncertainty in SF
CCD,1 (or equivalently |F |2) can be semi-quantitatively as-

sessed using an approximate theoretical relation, see Appendix D.1. Using the ap-

proximate relation, the a = 12 Å and a = 16 Å curves in Fig. 6.11 have been scaled to

match a = 8 Å, collapsing the curves for most of the presented qz-range (see dashed

lines in Fig. 6.11). Therefore, even if the value of a is unknown, the approximate

theoretical relation can be used to estimate the uncertainty in SF
CCD,1, or more im-

portantly |F |2. To emphasize the a-dependence of the curves, the a = 12 Å and

a = 16 Å curves are divided by the a = 8 Å curve and plotted in Fig. 6.12. If only an

upper bound on a can be established using the intensity decay in the qx-direction, the

magnitude of |F (qz)|2 is considerably uncertain for qz & 0.5 Å−1. The uncertainty

in |F (qz)|2 due to ∆a can be estimated using the approximate theoretical scaling

relation.
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Figure 6.11: SF
CCD,1(qx, qz) as a function of qz for qx = 0.08 Å−1 is plotted (solid

lines) for various a-values, holding other parameters constant. The curves have been
normalized at qz = 0.3 Å−1. Applying an approximate analytic relation for SF

CCD,1 as
a function of a, the solid lines are nearly collapsed to a single dashed curve, vertically
offset by 10−1 to improve visibility. The small peaks at qz ≈ 0.1 Å−1 (h = 1) are
referred to as “spikes” in Section 5.3.2.
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Figure 6.12: The ratio of the a = 12 Å and a = 16 Å qz-curves to the a = 8 Å curve
for qx = 0.08 Å−1 is plotted. For qz . 0.25 Å−1, the ratios are nearly 1, but for larger
qz-values, the qz-dependence of the different a-value curves is significant. In the figure
legend, F is either 12 (darker gray solid line) or 16 (lighter gray solid line).

jnagle
Sticky Note
The potential significance of this for determining the high q_z form factor has yet to be determined.  Of course, differences are only half this large for the form factors due to the square root.  It will be important to see whether the wrong choice of "a" has compensatory effects on S.  And it will be important to determine how the tilt dependent form factors compare to the older non-tilt ones.
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6.2 Gaussian vs Exponential Distributions

In Section 5.1, the scattering from the sample was assumed to be the incoherent sum

of the scattering from cylindrical subvolumes. The subvolumes’ dimensions are deter-

mined by a competition between the sample domain size and the sample coherence

lengths, see Section 5.3.2. Both Gaussian and exponential subvolume distribution

functions were considered plausible, see Sections 5.1.1 and 5.1.2. SF
CCD,1(qx, qz) is now

calculated using Gaussian and exponential distribution functions and the results are

compared.

In Fig. 6.13, SF
CCD,1(qx, qz) is plotted as a function of qz for qx = 0 Å−1 and

qx = 0.01 Å−1. The standard deviations of the Gaussians are Lr/3 and Lz/3. While

the Gaussian and exponential curves differ for qx = 0 Å−1, their predictions are

similar for qx = 0.01 Å−1, the minimum qx-value typically analyzed. In Fig. 6.14,

SF
CCD,1(qx, qz) is plotted as a function of qx for qz = 0.3 Å−1 and qz = 0.35 Å−1. The

Gaussian and exponential predictions are similar for qx > 0.01 Å−1. Since SF
CCD,1

calculated using Gaussian and exponential subvolume distributions are similar in

the commonly analyzed qx, qz-region, exponential distribution functions will be used

because they are described by a single parameter, as opposed to 2 parameters for a

Gaussian. All later experimental structure factor calculations use exponential domain

distributions.

6.3 Finite-sized Domains

Due to defects, inhomogeneity, and various other nonidealities, positional correlations

only persist over subvolumes of the sample, commonly referred to as domains. It is

assumed that there are no correlations between domains, and the X-ray scattering

from defects and domain boundaries is neglected. In principle, the correlations within

a domain are sensitive to the domain’s boundaries which may in turn be affected by

the domain’s position in the sample. For samples deposited on a solid substrate,

both the flat solid and upper free interfaces may influence bilayer fluctuations [78,

47, 69, 57, 68, 70]. Although, it has been argued that the bulk of a lipid bilayer stack

becomes effectively detached from the surfaces [79]. Following previous work [44,

46, 48, 55, 56, 45], height-height correlations within finite-sized domains are modeled

using the height-height correlation function of an infinite domain assuming periodic
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qx [Å−1]

S
F C

C
D

,1
[a

rb
.

sc
al

e]

Figure 6.13: SF
CCD,1(qx, qz) as a function of qz is plotted for Gaussian and exponential

subvolume distributions at qx = 0 Å−1 and qx = 0.01 Å−1. The curves have been
normalized at qz = 1 Å−1. Beyond qz ≈ 0.55 Å−1 the curves continue to converge.
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Figure 6.14: SF
CCD,1(qx, qz) as a function of qx is plotted for Gaussian and exponential

subvolume distributions at qz = 0.3 Å−1 and qz = 0.35 Å−1. The curves have been
normalized at qx = 0.2 Å−1. Beyond qx ≈ 0.1 Å−1 the curves continue to converge.
The vertical dashed-dotted gray line shows the minimum qx-value typically analyzed.
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boundary conditions, see Section 3.3.3 Eq. (3.71). The infinite domain and periodic

boundary assumptions make the height-height correlation function more analytically

tractable and therefore less computationally costly to evaluate. Below, it is shown

that height-height correlations of sufficiently large domains are well-approximated by

the correlations in the deep interior of an infinite domain.

Returning to an intermediate equation in the derivation of the height-height cor-

relation function Eq. (3.71) and substituting ω = QzD and v = ξ2Q2
r/2,

hj(ρ, `, τ) =
kBT

2π2Bξ2

∫ τ

0

dv

∫ π

0

dω
1− J0

(√
2vρ
)

cos(ωj)
v2

1+v`
+ sin2 (ω/2)

. (6.3)

Assuming that periodic boundary conditions are appropriate for finite-sized domains,

hj(ρ, `, τ) Eq. (6.3) is extended to be a function of the domain’s diameter Lr and the

domain’s number of layers J ,

hf
j(ρ, `, τ ;Lr, J) ≡ kBT

2π2Bξ2

∫ τ

( a
Lr

)
2
τ

dv

∫ π

π/J

dω
1− J0

(√
2vρ
)

cos(ωj)
v2

1+v`
+ sin2 (ω/2)

. (6.4)

The integrals in hf
j Eq. (6.4) are approximations for sums, and therefore, for decreasing

Lr or J , Eq. (6.4) is increasingly approximate. Nevertheless, to compare the finite

and infinite domain cases,

∆hf
j(ρ, `, τ ;Lr, J) ≡

∣∣∣∣∣1− hf
j(ρ, `, τ ;Lr, J)

hj(ρ, `, τ)

∣∣∣∣∣ (6.5)

is considered. In Fig. 6.15, Eq. (6.5) for J → ∞ is plotted as a function of ρ for

several Lr/a, and in Fig. 6.16, Eq. (6.5) for Lr →∞ is plotted as a function of ρ for

several J .

As expected for increasing ρ, hf
j is an increasingly poor approximation of hj.

However, since the scattering intensity is dominated by short length scale correlations

(ρ . 10), hj(ρ, `, τ) is a reasonable approximation for domains with finite Lr and J .

The physical domains will be assumed to be large enough (Lr/a � 102 and J � 10

layers) such that using hj is accurate.
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Figure 6.15: Relative difference ∆hf
j Eq. (6.5) is plotted as a function of ρ for several

Lr/a with j = 0, ` = 0.06, τ = 100, and J →∞. Recall that ρ = r/ξ, and typically,
ξ ≈ 50 Å. The j = 0 case was chosen since it makes the dominant contribution to the
predicted X-ray scattering intensity.
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Figure 6.16: Relative difference ∆hf
j Eq. (6.5) is plotted as a function of ρ for several

J with j = 0, ` = 0.06, τ = 100, and Lr →∞.



Chapter 6. Survey of Predicted Structure Factors 128

6.4 Second Experimental Structure Factor

In Chapter 5, two experimental structure factors were derived, SF
CCD,1 and SF

CCD,2,

and the predicted intensity, see Section 5.4, is

IF
CCD(qx, qz) = IF

CCD,1(qx, qz) + IF
CCD,2(qx, qz)

=
|F (qz)|2

qz
SF

CCD,1(qx, qz) +
F∆(qz)

qz
SF

CCD,2(qx, qz) (6.6)

≡ IF
c (qx, qz) + IF

bf(qx, qz). (6.7)

Prior work recognized that the intensity from hydrated bilayer stacks could be written

as the sum of two terms [38], but the term proportional to F∆ was neglected, assuming

F∆ � |F |2. The structure factor / form factor separation derived in Section 3.2.2 is

original to the current work, and therefore, IF
bf ≡ F∆S

F
CCD,2 has never previously been

considered.

SF
CCD,1 is the experimental structure factor of the bilayer stack, whereas SF

CCD,2

is for a single bilayer in a stack. Fig. 6.17 shows SF
CCD,1(qx, qz) (left-hand side) and

SF
CCD,2(qx, qz) (right-hand side). Only SF

CCD,1 has peaks along the meridian, the char-

acteristic scattering feature corresponding to a repeat out-of-plane distance. Both

functions decay for increasing qx at constant qz. SF
CCD,1 and SF

CCD,2 are plotted as

functions of qz in Fig. 6.18 and as functions of qx in Fig. 6.19. For sufficiently large

qx or qz, S
F
CCD,1 ≈ SF

CCD,2.

As was emphasized at the end of Section 5.4, SF
CCD,1 and SF

CCD,2 have similar

functional forms. They differ in their sums over out-of-plane index values, compare

f1 Eq. (5.145) and f ′1 (5.150) reproduced below for convenience,

f1(ρ, qz) =

∞∑′

j=0

Hz(jD, qz)√
1 + hjσ̃∗2z

exp

{
−q

2
zhj + j2D2σ̃∗2z
2 (1 + hjσ̃∗2z )

}
cos

(
qzjD

1 + hjσ̃∗2z

)
(6.8)

f ′1(ρ, qz) =

∞∑′

j=0

δj,0
Hz(jD, qz)√

1 + hjσ̃∗2z
exp

{
−q

2
zhj + j2D2σ̃∗2z
2 (1 + hjσ̃∗2z )

}
cos

(
qzjD

1 + hjσ̃∗2z

)
(6.9)

=
Hz(0, qz)√
1 + h0σ̃∗2z

exp

{
− q2

zh0

2 (1 + h0σ̃∗2z )

}
. (6.10)
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Figure 6.17: SF
CCD,1 (left-hand side) and SF

CCD,2 (right-hand side) are shown using the
same logarithmic grayscale for the parameter values in Table 6.1.

Note, the dependences of several functions were not written explicitly in Eqs. (6.8)-

(6.10): hj(ρ, `, τ) and σ̃∗z(qz). For all qz-values, the largest contribution to f1 is the

j = 0 term, and for small qz the many j 6= 0 terms dominate. For sufficiently large

qz-values, the exponential in Eq. (6.8) rapidly decays, and the j = 0 term becomes

dominant, f1(ρ, qz � 0) ≈ f ′1(ρ, qz � 0). The qx-dependence of SF
CCD,1 and SF

CCD,2

are primarily determined by f2(qx, qy, qz) Eq. (5.146),

f2(qx, qy, qz) =

∫ ∞
0

dr rHr(r)Jm

(√
q2
x + q2

y r
)
f1(ρ, qz). (6.11)

For large qx-values, only smaller ρ = r/ξ significantly contribute to f2 because its

integrand becomes increasingly oscillatory for increasing qx. Since h0 � hj 6=0 for

small ρ (see Fig. 4.1 for a plot of hj(ρ, `, τ)), the j = 0 term in Eq. (6.8) dominates

for sufficiently large qx regardless of the qz-value.
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Figure 6.18: SF
CCD,1 and SF

CCD,2 are plotted as functions of qz for qx-values of 0 Å−1 and

0.01 Å−1. The curves are normalized at qz = 0.9 Å−1.
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Figure 6.19: SF
CCD,1 and SF

CCD,2 are plotted as functions of qx for qz-values of 0.3 Å−1,

0.35 Å−1, and 0.7 Å−1. The curves are normalized at qx = 0.2 Å−1.
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The predicted X-ray scattering intensity IF
CCD Eq. (6.7) is dependent on the sum

of IF
c ∝ |F |2SF

CCD,1 and IF
bf ∝ F∆S

F
CCD,2. In Sections 7.4.1 and 7.4.2, it is shown that

typically F∆ � |F |2, based on a model for bilayer thickness fluctuations and fitting

measured scattering from stacks of DOPC bilayers. Therefore, even though SF
CCD,1

and SF
CCD,2 are of similar magnitude, IF

c � IF
bf for most qz-values.



Chapter 7

Data Analysis

Reiterating Eqs. (5.152) and (5.153), the theoretical intensity IF
CCD [qx(px), qz(pz)] and

measured intensity Im(px, pz) are related by

IF
CCD [qx(px), qz(pz)] ≡ Φ(qz)S

F
CCD,1(qx, qz) + Φ∆(qz)S

F
CCD,2(qx, qz) (7.1)

= Im (px, pz)− c(pz), (7.2)

where for notational convenience

Φ(qz) ≡
|F (qz)|2

qz
, (7.3)

Φ∆(qz) ≡
F∆(qz)

qz
, (7.4)

and c(pz) models remaining background scattering. If the background subtraction is

satisfactory, then c(pz) = 0 can be enforced, the case used here. The approximate

relations between q-space and CCD-space were presented earlier, see Eq. (5.133) and

Eq. (5.128). The measured data are fitted following the same protocol as for the

tilt-independent analysis [48]. First, initial guesses are used to evaluate SF
CCD,1 and

SF
CCD,2. Next, Φ(qz), Φ∆(qz), and c(qz) are determined by a linear fit to Im(px, pz)

for each pz-value. Given the values of Φ, Φ∆, and c, parameters of the experimental

structure factors are varied to minimize

132
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χ2 ≡
∑
qx,qz

R2(qx, qz) (7.5)

where R are the scaled residuals,

R(qx, qz) ≡
Im(qx, qz)− IF

CCD(qx, qz)

σe [Im(qx, qz)]
, (7.6)

and σe is the estimated standard deviation of the measured intensity. The resulting

structure factor parameter values are used as new initial guesses, and the process

repeats until either a minimum in χ2-space is found or the desired number of iterations

have been completed. 19

Following common convention to compare models with different numbers of de-

grees of freedom, the χ2-values are normalized by the degrees of freedom K, yielding

reduced χ2-values

χ2
red ≡

χ2

K
(7.7)

where

K ≡ N −P . (7.8)

N is the number of CCD pixels within the fitted region (typically about 4×104), and

P is the number of parameters. For a typical fit, there are about 200 linear scaling

parameters PL that correspond to Φ(qz) (one for every row of the fitted region of the

CCD) and as many as 6 nonlinear parameters PNL associated with the experimental

structure factor {Kc, B, Kθ, Lr, Lz, a}. 20 Considering Φ∆(qz) adds 200 more linear

parameters. Even though there are many linear parameters, determining their values

19Given typical initial parameter values, a minimum in χ2-space is often located in much less than
20 iterations and takes a total computation time of about 3 hours on a modern 4-core processor.

20PNL may be less than the number of fitted parameters. For instance if Lr � Lx and Lz �
Lz, then the experimental structure factor is independent of Lr and Lz, even if they are “free”
parameters. Since PNL � PL � N , the ambiguity in PNL is of little concern.
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is computationally trivial because there is a simple analytic relation for their best

values [80]. A modified version of the Levenberg-Marquardt algorithm is used to

determine the values of the nonlinear parameters [48]. 21

The estimated measurement errors σe are the combination of statistical noise in-

herent to the CCD (σback) and the counting statistics associated with X-ray scattering

(σs),

σ2
e = σ2

back + σ2
s . (7.9)

σ2
back is determined using a region of a sample exposure with no discernible sample

scattering, see Fig. 7.1. Following the previous tilt independent analysis [48], the

variance of the sample X-ray scattering σ2
s is modeled as aFIm where aF = 0.25 is

typical. Poisson statistics alone suggest σ2
s = Im; however, the intensity reported by

the CCD is related to the number of incident photons by an unknown multiplicative

factor (electronic gain). Therefore, the value of aF is empirically determined. In

principal, the same volume of the stacked bilayer sample could be exposed to X-

rays many times, thereby quantifying the uncertainty of the measured intensity. In

practice, the hydration of the sample is time-dependent, and the same part of a

sample can only be X-rayed for a limited duration before suffering beam damage.

The sample width (15 mm) is much greater than the beam width (about 0.2 mm).

Therefore, scattering from many different parts of the same sample can be measured

and compared. However, even different parts of the same sample are not statistically

equivalent, having different D-spacings which makes combining them impossible.

A detailed analysis of the scattering from a DOPC sample is discussed in Sec-

tions 7.1 - 7.4. Fig. 7.1 shows the relevant region of a background subtracted DOPC

exposure. Table 7.1 lists the values of the important sample, experimental, and coher-

ence parameters. Anticipating later results, Φ∆S
F
CCD,2 is neglected in fits presented in

Sections 7.1 - 7.3. First, in Section 7.1, the measured scattering is fitted by both the

tilt-dependent and tilt-independent models, and the tilt-dependent model is shown

to better account for the data than the tilt-independent model. Next, the degree to

which the measured data are sensitive to the values of Lr and Lz is evaluated in

21Most of the computational time fitting data is spent evaluating SF
CCD,1 since it requires the

calculation of several nested integrals, see Section 5.4.
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Section 7.2. Lr and Lz insignificantly influence fits to the data, and therefore, they

will often be eliminated as model parameters in favor of using coherence lengths to

limit long length scale correlations. Then in Section 7.3, several different qx, qz-regions

are fitted to assess the uncertainty in the values of {Kc, B, Kθ, Lr, Lz, a} due to

choosing a fitting region. Finally, the complete model in Eq. (7.1) is evaluated in

Section 7.4. It is shown that for most qz-values ΦSF
CCD,1 � Φ∆S

F
CCD,2. In Section 7.6,

the uncertainty of fitted parameter values is determined. The uncertainty is related

to the curvature of χ2-space in the vicinity of the minimum χ2-value located by the

nonlinear fitting algorithm. Table 7.11 lists the determined uncertainties of the fitted

Kc-, B-, Kθ-, and a-values, and to summarize, the uncertainties are . 1.5% of the

fitted parameter values.

Table 7.1: Sample and experimental parameter values for 2015 DOPC exposure.

parameter [units] value description

sa
m

p
le

D [Å] 63.8 out-of-plane repeat distance

T [◦C] 30 temperature

Ls [mm] 5 sample length along the beam

ts [µm] 10 sample thickness

γm [◦] 0 FWHM of mosaicity distribution

µ [mm] 3.08 1/e X-ray absorption length in sample

ε 0.999998 index of refraction

ex
p

er
im

en
ta

l

λ [Å] 1.108 X-ray wavelength

S [mm] 387.2 sample to detector distance

ps [mm/pixel] 0.07113 pixel size

bx [pixels] 2.3 beam width on CCD in x-direction

∆λ/λ 0.012 energy dispersion

∆γx 5× 10−5 beam angular divergence in x-direction

∆γz 1× 10−4 beam angular divergence in z-direction

co
h
er

en
ce ξTx [Å] 11000 transverse beam coherence along x̂

ξTz [Å] 5500 transverse beam coherence along ẑ

ξL [Å] 46 longitudinal beam coherence
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Figure 7.1: The background subtracted scattering intensity from a stack of DOPC
bilayers is shown. Intensity is expressed by a linear grayscale except that red pixels
indicate intensity less than zero and white indicates intensity greater than 200. The
predicted theoretical intensity is compared to the measured data within either the
two cyan dashed rectangles or within the solid magenta rectangle. σ2

back is the mean
square intensity within the yellow rectangle where the mean is essentially zero. The
green circles show the positions of the Caillé peaks for D = 63.8 Å.
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7.1 Comparing Tilt-dependent and -independent

Models

The DOPC exposure shown in Fig. 7.1 was fit using both tilt-dependent and tilt-

independent models. Anticipating later results, Φ∆S
F
CCD,2 is neglected, and only the

data within the dashed cyan rectangles are fitted. The tilt-independent model is

a special case of the tilt-dependent one in which Kθ → ∞ and a → 0; in prac-

tice, Kθ = 5000 mN/m and a = 4 Å are sufficient. The measured intensity and

model fits are plotted in Fig. 7.2 for several values of qz. The fitted values of the

experimental structure factor and χ2
red are listed in Table 7.2. For qx . 0.06 Å−1,

the tilt-dependent and -independent models yield visually similar fits. For greater

qx, the tilt-independent prediction deviates systematically from the measurements.

As expected, the tilt-dependent model predicts increased scattering at greater qx as

compared to the tilt-independent model, see Section 6.1.1. To emphasize the model

predictions as a function of qx, the measured data and models are averaged over the

fitted qz-values and plotted in Fig. 7.3 along with the associated scaled residuals R
Eq. (7.6). A slight dip in the measured intensity is visible at qx ≈ 0.18 Å−1, consistent

with a ≈ 17 Å (see Section 6.1.4).

Table 7.2: Parameter values for tilt-dependent and tilt-independent models.

Parameter [units] Tilt-dependent Tilt-independent

Kc [×10−13 ergs] 8.5 7.4

B [×1012 ergs/cm4] 7.0 7.2

Kθ [mN/m] 107 5000∗

a [Å] 18 4∗

χ2
red 1.471 1.660

∗ indicates a fixed parameter value.

The differences between the tilt-dependent and -independent model fits are accen-

tuated by comparing χ2
red-values limited to subsets of the total analyzed region. The

analyzed qx, qz-region is divided into subregions 0.02 Å−1 wide in the qx-direction,

including all relevant qz-values, and Fig. 7.4 plots χ2
red-values for these qx-dependent

subregions. For all subregions except the region centered at qx = 0.2 Å−1, the tilt-

dependent χ2
red-value is less than the tilt-independent χ2

red-value. Also, the χ2
red-values
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Figure 7.2: Measured data and tilt-dependent and -independent fits are plotted as
functions of qx for several qz-values. Representative error bars for qz = 0.35 Å−1 cor-
respond to ±σe. The curves have been vertically offset to improve visibility. Note,
due to the logarithmic vertical axis, negative intensity values are not plotted.

tend to decrease for increasing qx, suggesting that both models better account for the

scattering at greater qx (smaller Im) as compared to lesser qx (greater Im).

Tilt-dependent and -independent models are further compared by inspecting the

residuals between the fits and the data. The scaled residuals R(qx, qz) are shown for

both models in Fig. 7.5. As expected since the χ2
red-values in Fig. 7.4 are significantly

greater than 1 [81], there are qx, qz-regions where |R(qx, qz)| tends to be much greater

than 0 (correlated residuals). Since tilt-dependent and -independent R(qx, qz) are

visually similar, the scaled residuals are examined using a different method.

The scaled residuals from tilt-dependent and -independent fits are quantitatively

assessed using R distributions. The scaled residuals are divided into two groups

based on qx-value; R from lesser qx (qL
x : 0.01 . qx . 0.06 Å−1) and R from greater

qx (qG
x : 0.06 . qx . 0.18 Å−1). The resulting R distributions are plotted in Fig. 7.6

with corresponding Gaussian fits, see Table 7.3 for Gaussian fit parameter values.

The intermediate qx-value of 0.06 Å−1 was chosen because the tilt-dependent and

-independent models appear to significantly differ for qx & 0.06 Å−1, see Fig. 7.3.
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Figure 7.3: After averaging over all fitted qz-values, the measured data and tilt-
dependent and -independent fits are plotted as functions of qx. Also, the scaled
residuals R for both fits are plotted as functions of qx. The dashed-dotted gray line
is a guide to the eye.

qx-values greater than 0.18 Å−1 are not considered in order to minimize the influence

of the a parameter on the R distributions because a is treated differently for the

tilt-dependent and -independent fits. In the case of a statistically ideal fit, the mean

µ and standard deviation (SD) σ of a scaled residual distribution are consistent with

0 and 1, respectively. For both qL
x and qG

x , |µ| of the tilt-dependent distribution is

smaller than |µ| of the tilt-independent distribution, consistent with the diminished

χ2
red-values in Fig. 7.4. For qG

x the tilt-independent model systematically predicts less

intensity than is measured, and therefore the mean is significantly shifted from 0.
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Figure 7.4: χ2
red-values from tilt-dependent and -independent fits are plotted for

0.02 Å−1 wide qx-ranges.

R

Figure 7.5: Scaled residuals R Eq. (7.6) of tilt-independent (left-hand side) and tilt-
dependent (right-hand side) model fits.
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Figure 7.6: Tilt-dependent and -independent (��tilt) R distributions for (a) 0.01 .
qx . 0.06 Å−1 and (b) 0.06 . qx . 0.18 Å−1. The red and blue lines are Gaussian
fits to the distributions, and Table 7.3 summarizes the fitted parameter values. The
distributions have been normalized by the fitted Gaussian amplitudes. Representative
error bars for the tilt-dependent distribution are the square root of the number of
pixels whose R-value is within a given R-bin of size 0.1. The dashed-dotted gray
lines are guides to the eye.

Table 7.3: Parameter values for scaled residual distributions plotted in Fig. 7.6.

parameter
0.01 . qx . 0.06 Å−1 0.06 . qx . 0.18 Å−1

tilt ��tilt tilt ��tilt

µ (mean) 0.052 -0.11 0.13 0.53

∆µ 0.013 0.013 0.0076 0.0075

σ (SD) 1.3 1.3 1.2 1.2

∆σ 0.0096 0.0098 0.0054 0.0054
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7.2 Limiting Long Length Scale Correlations

Long length scale correlations are limited by the smaller of the sample coherence

volume and the domain size, see Sections 5.1 and 5.3.2 for many details. Most impor-

tantly from a data fitting perspective, the sample coherence volume is determined by

measured beam properties, while the domain characteristic diameter Lr and height

Lz are unknown. Previously in Sections 6.1.2 and 6.1.3, the experimental structure

factor SF
CCD,1 was shown to be fairly insensitive to Lr and Lz within the typically ana-

lyzed qx, qz-region, and therefore, to minimize the number of parameters participating

in the nonlinear least squares fit, it was suggested that Lr and Lz be eliminated in

favor of using the sample coherence volume to limit long length scale correlations.

The insensitivity of SF
CCD,1 to Lr and Lz is further assessed by fitting measured

data. Two fitting procedures are compared. In the first procedure, Lr and Lz

are fixed to sufficiently large values such that sample coherence always limits long

length scale correlations. In the second procedure, Lr and Lz are free parameters

whose values are determined by the nonlinear fitting routine. Given the experimental

beam divergence and energy spread, see Table 7.1, coherence lengths dominate for

Lr > ξTz ≈ 5500 Å and Lz > 2πξL/(λqz,min) ≈ 900 Å, where qz,min is the smallest

qz-value in the fitted qx, qz-region. Table 7.4 summarizes the relevant fitted parameter

values of the experimental structure factor as well as χ2
red for several pairs of different

initial values for Lr and Lz. Consistent with Sections 6.1.2 and 6.1.3, different values

of Lr and Lz only modestly affect χ2
red. Table 7.4 shows that the fitted values of Lr

and Lz are initial value dependent. If the initial value of J or Lr is greater than

14 or 5500 Å, respectively, then the fitted and initial values are about the same.22

In Table 7.4, the red and blue χ2
red-values are the best fits that correspond to

suppressing Lr and Lz (��Li) and fitting Lr and Lz, respectively. The residuals of

the two aforementioned fits are compared as a function of qx by calculating χ2
red-values

limited to subsets of the total analyzed region. The analyzed qx, qz-region is divided

into subregions 0.02 Å−1 wide in the qx-direction, including all relevant qz-values, and

Fig. 7.7 plots χ2
red-values for these qx-dependent subregions. For qx . 0.1 Å−1 using Li

22Since the nonlinear space is searched using a modified Levenberg Marquardt (mLM) algorithm
which is a local minimization routine, a certain degree of initial value dependence in the fitted values
is to be expected. Additionally, for J & 14 and Lr & 5500 Å, the fitted values are dependent on
the detailed implementation of the mLM algorithm. If only a narrow range of values are sampled in
the vicinity of an initial parameter value, the mLM algorithm may not modify the values of J and
Lr because the χ2

red-space is flat along the J - and Lr-directions for J > 14 and Lr > 5500 Å.
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Table 7.4: Fitted parameter values for different initial values of Lr and J ≡ Lz/D
(D = 63.8 Å).

parameter [units] fits

in
it

ia
l

va
lu

es Lr [×103 Å] ∞∗ 2.5 5 5 5 10

J [Lz/D] ∞∗ 10 5 10 20 10

fi
tt

ed
va

lu
es

Lr [×103 Å] ∞∗ 2.7 5.2 5.0 4.5 10.

J [Lz/D] ∞∗ 9 6 8 20. 9

Kc [×10−13 ergs] 8.5 8.4 8.0 8.3 8.5 8.3

B [×1012 ergs/cm4] 7.0 7.2 8.0 7.3 7.0 7.3

Kθ [mN/m] 107 115 126 112 105 113

a [Å] 18 17 17 18 18 17

χ2
red 1.471 1.464 1.468 1.468 1.470 1.469

∗ indicates a fixed parameter value.

as free parameters slightly diminishes χ2
red-values, consistent with expectations from

Sections 6.1.2 and 6.1.3. To further quantify the differences between the red and blue

fits, corresponding R distributions are plotted in Fig 7.8. The scaled residual are

divided into two groups; R from lesser qx-values (qL
x : 0.01 . qx . 0.1 Å−1) and R

from greater qx (qG
x : 0.1 . qx . 0.22 Å−1). The R distributions are fit by Gaussians,

and the fitted parameter values are summarized in Table 7.5. Using Lr and Lz as

free parameters, does not yield a statistically improved R distribution. Therefore,

unless otherwise stated, Lr and Lz are fixed to sufficiently large values such that

coherence considerations limit long length scale correlations.



Chapter 7. Data Analysis 144

0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0
1 . 0

1 . 2

1 . 4

1 . 6

1 . 8

 
 

χ
2 re

d

qx [Å−1]
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Figure 7.7: χ2
red-values from suppressing Li (��Li) and fitting to determine Li-values

are plotted for 0.02 Å−1 wide qx-ranges.
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Figure 7.8: R distributions corresponding to suppressed (��Li) and fitted Li for (a)
0.01 . qx . 0.1 Å−1 and (b) 0.1 . qx . 0.22 Å−1. The lines are Gaussian fits
to the distributions, and Table 7.5 summarizes the fitted parameter values. The
distributions have been normalized by the fitted Gaussian amplitudes. Representative
error bars for fitted Li are the square root of the number of pixels whose R-value is
within a given R-bin of size 0.1. The dashed-dotted gray lines are guides to the eye.

Table 7.5: Parameter values for scaled residual distributions plotted in Fig. 7.8.

parameter
0.01 . qx . 0.1 Å−1 0.1 . qx . 0.22 Å−1

��Li Li ��Li Li

µ (mean) 0.10 0.10 0.094 0.092

∆µ 0.0096 0.0096 0.0069 0.0069

σ (SD) 1.3 1.3 1.1 1.1

∆σ 0.0069 0.0069 0.0051 0.0050
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7.3 Fitted qx, qz-Region

In Section 6.1.1, it is established that SF
CCD,1 is sensitive to varying {Kc, B, Kθ}

in the qx, qz-region within the magenta rectangle in Fig. 7.1. For the analyses in

Sections 7.1 and 7.2, only the data within the two cyan rectangles are fitted. In

Section 7.3.1, the reason for neglecting the region within the magenta rectangle but

between the two cyan rectangles is discussed. The chosen minimum and maximum

qx-values (qx,min and qx,max, respectively) of the fitted region are compromises between

several competing issues. Therefore, in Section 7.3.2, the aforementioned competing

issues are summarized, and the dependence of {Kc, B, Kθ, Lr, Lz, a}-values on

different choices for qx,min and qx,max is demonstrated.

7.3.1 qz-Range

Data within the magenta rectangle in Fig. 7.1 are fitted using the tilt-dependent

and -independent models. Fitted parameter values are listed in Table 7.6 for both

cyan and magenta bounded regions of data. Fitting the cyan and magenta regions

results in similar fitted parameter values, however, the χ2
red-values associated with

the magenta region are significantly larger than χ2
red-values fitting the cyan region.

The scaled residuals map for the tilt-dependent fit of the magenta bounded region

is shown in Fig. 7.9. For 0.41 . qz . 0.47 Å−1, the residuals are large for most of

the qx-range. Fig. 7.10 plots the data and tilt-dependent and -independent model

fits, averaging 0.41 ≤ qz ≤ 0.47 Å−1. For qx & 0.04 Å−1, both models systematically

predict less intensity than is experimentally observed. The data and models appear

more consistent for qx . 0.04 Å−1; however, the scaled residuals are large within

the aforementioned qx-range. Since both tilt-dependent and -independent models

systematically deviate from the measured scattering for 0.41 . qz . 0.47 Å−1, this

qz-range is neglected for the majority of the analyses.

The qz-range 0.41 - 0.47 Å−1 is unremarkable from the perspective of the experi-

mental structure factors, see Fig. 6.17 for typical SF
CCD,1 and SF

CCD,2. In Fig. 7.1, the

measured scattering intensity is less intense for 0.41 . qz . 0.47 Å−1 due to |F (qz)|2.

Therefore, the discrepancy between data and models may be attributable to unac-

counted for mixing between |F |2 and SF
CCD,1, for instance mosaicity (see Section 5.2) or

q-resolution (see Section 5.3.2). Alternatively, the systematic deviations between data

and models may involve F∆. This hypothesis is tested in Section 7.4.2, and it is shown
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Table 7.6: Parameter values for cyan and magenta bounded fitting regions in Fig. 7.1
(D = 63.8 Å).

tilt-dependent tilt-independent

Parameter [units] cyan magenta cyan magenta

Kc [×10−13 ergs] 8.5 8.6 7.4 7.3

B [×1012 ergs/cm4] 7.0 7.0 7.2 7.3

Kθ [mN/m] 107 95 5000∗ 5000∗

a [Å] 18 17 4∗ 4∗

χ2
red 1.471 1.656 1.660 1.843

∗ indicates a fixed parameter value.

R

Figure 7.9: Scaled residuals R of tilt-dependent model fit for qx, qz-region within the
magenta rectangle in Fig. 7.1.

that including the term F∆S
F
CCD,2 does not improve the fit for 0.41 . qz . 0.47 Å−1.

Previously, the unfavorable comparison between measured intensity near minima of

|F |2 and the tilt-independent theory was discussed in the context of the scattering

from hydrated stacks of DMPC bilayers [82]. Empirically, poor fits near apparent

|F |2 minima are typical.
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Figure 7.10: Measured data and tilt-dependent and -independent model fits are plot-
ted as functions of qx, after averaging 0.41 ≤ qz ≤ 0.47 Å−1. Representative error bars
indicate 1 standard deviation. Also, the scaled residuals R for both fits are plotted
as functions of qx. The dashed-dotted gray line is a guide to the eye.



Chapter 7. Data Analysis 149

7.3.2 qx-Range

qx,min for Analysis

The minimum qx-value of the fitting range qx,min is a compromise between several

competing issues. Two issues advocate for a larger qx,min. The predicted scattering

intensity neglects the scattering from the Si substrate which is known to be concen-

trated around qx = 0, typically within |qx| ≈ 0.003 Å−1. Also, SF
CCD,1 is increasingly

insensitive to Lr and Lz for increasing qx, see Sections 6.1.2 and 6.1.3. Since Lr and

Lz are of secondary importance compared to {Kc, B, Kθ}, a greater qx,min-value is

chosen to reduce the dependence of SF
CCD,1 on Lr and Lz. On the other hand, the

measured data at smaller qx tend to be the most intense and are more sensitive to the

the long length scale predictions of the model as compared to larger qx. Consequently,

a compromise qx,min-value has been chosen to be 0.01 Å−1 in this lab.

To assess the dependence of fitted parameter values on qx,min, qx, qz-regions with

different qx,min-values are fitted. Table 7.7 lists the resulting fitted parameter values.

Based on Sections 6.1.2 and 6.1.3, SF
CCD,1 is known to be increasingly sensitive to the

values of Lr and Lz for decreasing qx. The fitted parameter values are similar for all

case in which Li were suppressed. For both qx,min = 0.005 Å−1 and 0.016 Å−1, the

fitted values of Lr are unreasonably small. In the qx,min = 0.005 Å−1 case, the model

may not adequately predict long length scale phenomena, or the specular scattering

from the substrate is non-negligible. For qx,min = 0.016 Å−1, there may be insufficient

data to reliably determine Lr. If Li are suppressed, it may by advantageous to use

qx,min = 0.016 Å−1 as compared to qx,min = 0.01 Å−1because the moduli values are not

too dissimilar and a larger qx,min-value makes SF
CCD,1 less sensitive to the secondary

parameters Li. Although, fitting data at smaller qx exposes the deficiencies of the

current modeling, potentially motivating future improvements.

qx,max for Analysis

The qx,max-value for the typical fitting region, see Fig. 7.1, was chosen to include all

pixels for which the average of the measured intensity over a small qx region is greater

than 0. In other words, qx,max ≈ 0.22 Å−1 is the intersection of Im(px) and the line

I = 0. Alternatively, a more conservative qx,max-value of 0.17 Å−1 is the intersection
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Table 7.7: Parameter values for various qx,min-values of the fitting range.

qx,min [Å−1]

Parameter [units] 0.005 0.01 0.016

Kc [×10−13 ergs] 9.7 8.3 8.4 8.5 10.1 8.6

B [×1012 ergs/cm4] 6.5 6.6 7.2 7.0 6.2 7.2

Kθ [mN/m] 105 130 115 107 92 100

a [Å] 18 17 17 18 18 18

Lr [Å] 300 ∞∗ 2700 ∞∗ 300 ∞∗

J [Lz/D] 9 ∞∗ 9 ∞∗ 14 ∞∗

χ2
red 1.569 1.633 1.464 1.471 1.356 1.380

∗ indicates a fixed parameter value.

of Im(px) and I = σback.23 To an extent, a larger qx,max-value is useful because the

scattering at larger qx-values is more sensitive to the short length scale predictions

of the model as compared to scattering at smaller qx-values. However, the analysis

is based on a continuum model (see Section 3.1), which is only physically reasonable

for sufficiently small qx, so fitting measured scattering at large qx may yield spurious

results. Table 7.8 lists potential qx,max-values based on length scales of the current

continuum model.

Table 7.8: Possible qx,max-values based on length scales of the continuum model.

qx,max [Å−1]

Parameter value [Å] π/parameter

D 63.8 0.05

ξ 58 0.05

a 17 0.18

ξθ 8.6 0.37

The value of qx,max is evaluated using fitted parameter values and the scaled resid-

uals from the fits. Table 7.9 lists fitted parameter values for several qx,max-values.

Several fixed values of a were sampled since a is expected to be the parameter most

sensitive to qx,max. The value of a has little effect on fitted Kc and B values. However,

23Currently, the fitting software does not support a qz-dependent qx,max, and therefore, the most
intense regions at large qx have been used to set qx,max.
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fixing the value of a to be less than 17 Å significantly increases the fitted value of

Kθ. When a is fitted, similar Kθ-values are determined. For qx,max = 0.11 Å−1, the

fitted a-value of 24 Å is unreasonable because the measured data do not precipitously

decrease for qx > π/24 Å ≈ 0.13 Å−1. The scaled residuals corresponding to the

qx,max = 0.22 Å−1 fit are plotted in Fig. 7.3, after averaging over all fitted qz-values.

If the continuum approximation were to be a progressively worse approximation for

scattering at increasing qx-values within the fitted range, the scaled residuals might

increase as a function of qx. However, the tilt-dependent model tends to better ac-

count for the measured scattering for increasing qx, see Fig. 7.4.
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7.4 Comparing IF
CCD,1 and IF

CCD,2

IF
CCD,1 ∝ |F |2SF

CCD,1 and IF
CCD,2 ∝ F∆S

F
CCD,2 were derived in Section 5.4, see Eqs. (5.149)

and (5.151), respectively. Previously in Section 6.4, SF
CCD,1 and SF

CCD,2 were shown to

be of similar magnitude, yet SF
CCD,2 was neglected for the rest of Chapter 6, assuming

that |F |2 � F∆. Additionally when fitting data, F∆S
F
CCD,2 is neglected in all Sections

in this chapter besides the current one. Recall,

F∆(qz) ≡
[〈
|F0(r, qz)|2

〉
−
∣∣∣〈F0(r, qz)〉

∣∣∣2] (7.10)

≥ 0

and F (qz) ≡ 〈F0(r, qz)〉, see F∆ in Eq. (3.36) and F (qz) in Eq. (3.34). First in Sec-

tion 7.4.1, the relationship between |F |2 and F∆ is evaluated by hypothesizing a model

for fluctuations in the electron density profile. Then, fits to measured X-ray scatter-

ing intensity from a hydrated stack of DOPC bilayers are presented in Section 7.4.2.

Both Subsections conclude that the contribution to the measured intensity due to

F∆S
F
CCD,2 Eq. (5.151) is negligible, and therefore, IF

CCD ≈ |F |2SF
CCD,1/qz.

7.4.1 Modeling F∆

The relationship between |F |2 and F∆ can be evaluated theoretically, assuming a

model for the fluctuations of the electron density profile (EDP). The modeling and

corresponding results are briefly summarized below, see Appendix C.1 for details and

further discussion. The fluctuations in question are due to the peristaltic modes which

are treated en masse in the modeling of the stacked bilayer EDP in Section 3.2.1. The

EDP fluctuations are hypothesized to be independent out-of-plane extensions and

compressions of the monolayers (L) with the associated energy given by Eq. (C.25)

EL
A(∆D) = KAAo

(
∆D

Dc

)2

, (7.11)

where KA is the compression modulus of the whole bilayer, Ao is the reference area,

∆D is the change in thickness, andDc is the hydrocarbon thickness. The relevant peri-
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staltic fluctuations are assumed to involve the collective motion of several molecules;24

an approximate lower bound on the Ao-value of 2000 Å2 (about 30 molecules) is used.

The effective modulus in EL
A Eq. (7.11) is KAA0, and consequently, choosing a small

A0-value is equivalent to reducing the energetic cost to modify the thickness of a

leaflet. Therefore, the smearing of the EDP described below is intended to be an ap-

proximate upper bound on the effect of thermal thickness fluctuations. Additionally,

since the values of KA are not strongly dependent on lipid membrane composition [83],

the presented argument is interpreted as a general case.

Using the model in Eq. (7.11) and an input EDP from a simulation [84], the

ensemble averaged quantities
〈∣∣F L(qz)

∣∣2〉 and
∣∣〈F L(qz)

〉∣∣2 are calculated and plotted

in Fig. 7.11. The most relevant comparison is between

F L
∆(qz) ≡

〈∣∣F L(qz)
∣∣2〉− ∣∣〈F L(qz)

〉∣∣2 (7.12)

and
∣∣〈F L

〉∣∣2. For all qz except near
∣∣〈F L(qz)

〉∣∣2 ≈ 0,
∣∣〈F L

〉∣∣2 � F L
∆. Therefore, it

is expected that F∆S
F
CCD,2 is negligible compared to |F |2SF

CCD,1 except possibly near

minima of |F (qz)|2.
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Figure 7.11:
〈∣∣F L

∣∣2〉,
∣∣〈F L

〉∣∣2, and F L
∆ are plotted for KA = 2.75 × 10−21 J/Å2,

Ao = 2000 Å2, and Dc = 30 Å. In the right-hand panel, the vertical axis is expanded
as compared to the left-hand panel to highlight F L

∆.

24In Section 3.2.1, the single bilayer reference electron density ρs is assumed to be inherently
broadened by protrusion modes.
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7.4.2 Fitting Measured Intensity

Scattering intensity from fully hydrated DOPC bilayers is fit using two methodolo-

gies. One procedure concurrently determines |F |2 and F∆ and therefore is termed

the parallel method. The parallel fitting procedure was previously outlined at the

beginning of this chapter. Summarizing the most important points, initial guesses

are used to evaluate SF
CCD,1 and SF

CCD,2. Then, |F |2 and F∆ are determined by a

linear fit to Im(px, pz) for each pz-value. Given the values of |F |2 and F∆, structure

factor parameters are updated using a nonlinear fit. The updated structure factor

parameters are used as new initial guesses and the process iterates.

The second fitting procedure leverages known attributes of SF
CCD,1 and SF

CCD,2 to

separate the intensity contributions of |F |2SF
CCD,1 and F∆S

F
CCD,2 and is called the

series method. In Section 6.4, it was shown that for qx > qc
x(pz) S

F
CCD,1(qx, qz) ≈

SF
CCD,2(qx, qz), and therefore, IF

CCD Eq. (7.1) can be simplified,

IF
CCD [qx > qc

x(pz), qz(pz)] ≈
|F (qz)|2 + F∆(qz)

qz
SF

CCD,1 [qx > qc
x(pz), qz] (7.13)

= Im (px > pc
x, pz) . (7.14)

Using Eq. (7.13), it is possible that the sum |F (qz)|2 + F∆(qz) ≡ F ∗(qz) is more

robustly determined than the parallel method’s determination of |F |2 and F∆.

First in the series fitting methodology, SF
CCD,1 and SF

CCD,2 are calculated using

initial guesses for their parameter values. Then for each pz-value, qc
x is determined

by comparing SF
CCD,1 and SF

CCD,2. F ∗(qz) is determined using Eq. (7.13) and a linear

least squares fit. Next, the difference of the total intensity and F ∗(qz)S
F
CCD,1/qz,

Im(px, pz)−
F ∗(qz)

qz
SF

CCD,1(qx, qz) =
F∆(qz)

qz

(
SF

CCD,2 − SF
CCD,1

)
, (7.15)

is used to determine F∆ using a second linear least squares fit. Finally, the structure

factor parameters are refined using a nonlinear least squares fit.

The parallel and series fitting methods were applied to the measured data within

the magenta rectangle shown in Fig. 7.1. The resulting |F |2 and F∆ are plotted in

Fig. 7.12. Since by definition F∆ ≥ 0, much of the fitted F∆-regions are unreasonable.
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Also, |F (qz)|2 is inconsistent with previous experiments and simulations [16] with the

caveat that the cited experimental work effectively assumed F∆ � |F |2. Correlations

in the fitted |F |2 and F∆ suggest that the measured scattering is insensitive to |F |2

and F∆ individually; overwhelming positive or negative values of F∆ are matched by

corresponding deviations in |F |2. F ∗ is plotted in Fig. 7.13 and is much smoother

than |F |2 and F∆. F ∗ is similar to both
∣∣〈F L

〉∣∣2 and
〈∣∣F L

∣∣2〉 plotted in Fig. 7.11.

Results from both the parallel and series fitting procedures suggest that the data do

not support inclusion of the term F∆S
F
CCD,2.
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Figure 7.12: The determined |F (qz)|2 and F∆(qz) are plotted from both the parallel
(top) and series (bottom) fitting methods on the same arbitrary scale. The dashed-
dotted gray lines are guides to the eye.

In Section 7.4.1, it was shown that F L
∆ �

∣∣〈F L
〉∣∣2 for all qz except near

∣∣〈F L(qz)
〉∣∣2 ≈

0. Therefore, it is worth considering whether the contribution of F∆S
F
CCD,2 to the

measured intensity may be significant near minima in Im along the qz-direction (for

example near qz = 0.44 Å−1 in Fig. 7.1). Fig. 7.14 shows parallel and series fits and

measured data centered at qz = 0.44 Å−1, averaging 0.41 . qz . 0.47 Å−1. Neither

fit satisfactorily describes the measurement, and therefore, there is no conclusive ex-

perimental evidence supporting a significant contribution from F∆S
F
CCD,2. From an
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Figure 7.13: |F (qz)|2 + F∆(qz) is plotted from both the parallel and series fitting
methods.

electron density modeling perspective (see Section 3.2.1), the fluctuations attributed

to the peristaltic modes are inconsequential for predicting the X-ray scattering in the

typical qx, qz-region.
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Figure 7.14: Measured data and the tilt-dependent, parallel, series, and tilt-
independent fits are plotted as functions of qx, averaging 0.41 . qz . 0.47 Å−1.
Representative error bars indicate 1 standard deviation.
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7.5 Form Factor

Besides parameter values of the experimental structure factor, the scaling factor

Φ(qz) = |F (qz)|2/qz is also determined by fitting the measured scattering intensity. 25

Following the Nagle lab protocol, Φ(qz) is evaluated using the data within the qx, qz-

region bounded by a yellow rectangle in Fig. 7.15 along with SF
CCD,1 parameter values

listed in Tables 7.10. Since Φ is a fitted parameter with an associated uncertainty,

there is a significant chance that Φ < 0 for small Φ. Consequently, to show this in

graphs, |F (qz)| has commonly been plotted as [85]

|F (qz)| ≡ sgn [Φ(qz)]
√
|Φ(qz)| qz, (7.16)

where sgn[. . . ] returns the sign of its argument. Ignoring the negative values of Φ

unduly biases fits of |F | to larger positive values.

Table 7.10: Sets of fitted parameter values used to determine Φ(qz).

Parameter [units] tilt tilt and Li ��tilt

Kc [×10−13 ergs] 8.5 8.4 7.4

B [×1012 ergs/cm4] 7.0 7.2 7.2

Kθ [mN/m] 107 115 5000∗

a [Å] 18 17 4∗

Lr [Å] ∞∗ 2700 ∞∗

J [Lz/D] ∞∗ 9 ∞∗

∗ indicates a fixed parameter value.

|F (qz)| are plotted in Fig. 7.16 corresponding to the three sets of fitted parameter

values in Table 7.10. Consistent |F | are determined for both tilt-dependent and -

independent models as well as for fitting Li (see Section 7.2) within the tilt-dependent

model. However, the interpretation of |F (qz)|2 in terms of the single membrane

electron density ρs is different for the tilt-dependent and -independent models. In

Section 3.2.2, Eqs. (3.19) and (3.34) define the tilt-dependent form factor,

25In previous Nagle lab software, the determined scaling factors were not absorption corrected, see
Section 6.2 in [48]. In the current software, the experimental structure factor is absorption corrected
because the absorption correction is dependent on the incident angle [50]. Consequently, Φ(qz) are
absorption corrected.
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Figure 7.15: The background subtracted intensity from a stack of DOPC bilayers is
shown. Intensity is expressed by a linear grayscale except that red pixels indicate
intensity less than zero and white indicates intensity greater than 200. Φ(qz) is
determined using the fitted SF

CCD,1 parameter values in Table 7.10 and the data within
the yellow rectangle. The green circles indicate positions of Caillé peaks.
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Figure 7.16: The determined |F (qz)| Eq. (7.16) are plotted for fitted SF
CCD,1 parameter

values listed in Table 7.10. Commonly, a smooth baseline is subtracted from Φ(qz)
such that |F (qz)| is zero at apparent minima (for example qz ≈ 0.28 Å−1 and ≈
0.42 Å−1). The aforementioned subtraction was not performed.

jnagle
Sticky Note
 The subtraction indicated in Fig. C.4 in Appendix C.1.3,  would bring these minima closer to zero.  However, the qr dependence for these qz values does not conform to the liquid crystal theory. This is consistent with mosaic spread artifactually increasing these weak intensities and, through the square root, giving significant lift off of the zeros of the form factors.
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F (qz) ≡
1

A

∫
A

d2r

∫ D/2

−D/2
dz̃
〈ρs[z̃, Po(r)]〉
〈Ψ0〉

eiqz z̃/〈Ψ0〉. (7.17)

Substituting z = z̃/ 〈Ψ0〉 into Eq. (7.17),

F (qz) ≈
1

A

∫
A

d2r

∫
dz
〈
ρs

[
z 〈Ψ0〉 , P0(r)

]〉
eiqzz. (7.18)

Finally, the undulation correction (UC) [39] is recognized,

ΨUC ≡ 〈Ψ0〉 , (7.19)

and F (qz) is concisely expressed as

F (qz) ≈
∫

dz ρ(z)eiqzz (7.20)

where

ρ(z) ≡
〈
ρs

[
zΨUC, P0(r)

]〉
. (7.21)

In comparison, the tilt-independent form factor was previously defined in [48] as

F ′(qz) ≡
∫

dz ρ′(z)eiqzz, (7.22)

where ρ′(z) is conceptually similar to 〈ρs[z, P0(r)]〉 given the discussion in Section

3.2 of [48]. Eq. (7.21) emphasizes the effect of ΨUC; it stretches or contracts the

electron density in the z-direction. A term similar to ΨUC would be present in F ′(qz)

Eq. (7.22) if cosαb had not been neglected, see Section 3.2 in [48] and compare

Eqs. (3.1) and (3.2). Prior work has operationally recognized the influence of a

UC [39, 48, 85], but the above derivation clearly derives the relations between the

hypothesized single membrane electron density, ΨUC, and the result of an X-ray

scattering measurement. Most importantly, ΨUC is different for tilt-dependent and

-independent models. Therefore, even if the measured |F (qz)| for tilt-dependent and

-independent models are consistent, the interpretation in terms of electron density

differ. ΨUC is further discussed in Appendix C.2.
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7.6 Uncertainty in Primary Fitted Parameters

As suggested in Sections 7.2 and 7.3, the fitted parameter values depend on the details

of the fitting procedure. Consequently, the uncertainty of the determined parameter

values could reflect the aforementioned fitted parameter value variation. However,

the various fitting methodologies are not equally reasonable. Therefore, the present

section focuses on the uncertainty of fitted parameters given a particular choice of

fitting protocol.

The fitted qx, qz-region is shown in Fig. 7.1, and Lr and Lz are suppressed by fixing

their values such that coherence considerations limit long length scale correlations,

see Section 7.2. Fitted parameter values have associated uncertainty reflecting the

curvature of the χ2-space in the vicinity of the minimum located by the nonlinear

least-squares algorithm. Following the common precedent [81], the uncertainty of

a fitted parameter value is quantified by how much its value must be modified to

increase the χ2-value by 1, allowing all other parameter values to be determined by

the fitting algorithm. The change in the χ2 value from the χ2 value of the best tilt-

dependent analysis is called ∆χ2. For {Kc, B, Kθ, a}, the aforementioned procedure

was used, fixing each parameter value to ∆% = {−5%, −2%, −1%, 1%, 2%, 5%}
of its best tilt-dependent fitted value, see Table 7.11. The resulting ∆χ2-values are

listed in Table 7.11. For a given parameter, uncertainty values were determined by

fitting the associated ∆χ2-values (a row in Table 7.11) to

∆χ2(∆%) = a(∆%)2 + b(∆%)3, (7.23)

where a and b are constants determined by a linear least squares fit. From the

fit Eq. (7.23), parameter values corresponding to ∆χ2 = 1 were determined and

thereby, uncertainties on the best fitted parameter values. In Fig. 7.17, the ∆χ2-

values associated with Kc in Table 7.11 are plotted as a function of the percent

change in the fixed Kc-value to illustrate the aforementioned uncertainty analysis.

The best tilt-dependent parameter values and associated uncertainties are also

listed in Table 7.11. ∆χ2 increases more rapidly for changes in Kc- and B-values as

compared to changes in Kθ- and a-values. This may in part be due to the fact that

Kθ and a are primarily determined by the weaker measured intensity at larger qx as

compared to Kc and B which are determined by the stronger measured intensity at
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Table 7.11: Parameter values and associated uncertainties based on a ∆χ2-value of
1.

∆χ2

Parameter -5% -2% -1% 1% 2% 5% final value

Kc 706.0 122.7 29.6 10.3 68.2 495.9 8.5± 0.017

B 215.6 19.2 -2.7 15.0 40.6 119.3 7.0± 0.027

Kθ 13.4 1.1 0.9 -9.3 3.5 16.6 107± 1.4

a 24.0 10.6 -1.7 7.1 16.2 38.9 18+0.15
−0.16
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Figure 7.17: ∆χ2-values listed in Table 7.11 corresponding to Kc are plotted as a
function of the % change in the best tilt-dependent Kc-value (8.5× 10−13 ergs). The
red dashed line is the best fit of Eq. (7.23). The right-hand plot emphasizes the small
∆χ2-range, and the blue dotted-dashed line shows ∆χ2 = 1.

smaller qx. Since the ratio of signal to noise typically increases for increasing qx, the

χ2-value is less sensitive to changes in the values of Kθ and a as compared to Kc and

B. The uncertainty values in Table 7.11 are all less than about 1.3%. The small

uncertainty values are primarily due to the large number of CCD pixels in the fitted

qx, qz-region (typically about 4 × 104). Consequently, a χ2
red-value of 1.5 (typical for

Table 7.11) corresponds to a χ2-value of about 6× 104. Therefore, ∆χ2 = 1 is only a

change in χ2 of about 0.002%. 26

26It is possible that the intensity measured in different pixels is correlated. In the case of correlated
pixels, χ2 and χ2

red are related by a number less than the number of pixels within the fitted region.
Consequently, the change in a parameter value corresponding to a ∆χ2-value of 1 will likely be larger
than the values listed in Table 7.11. From this perspective, the uncertainties listed in Table 7.11 are
lower bounds on the precision of the fitted parameters.
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As indicated previously, the uncertainty values in Table 7.11 indicate the precision

of the fitted parameter values given the large data set. These uncertainty values do

not reflect other sources of uncertainty (such as experimental and sample preparation)

that influence the typically determined parameter values. In Chapter 8, determined

parameter values for several exposures of three different DOPC samples are listed

and discussed. Fitted parameter values determined from exposures corresponding to

different parts of the same sample are shown to vary by more than the uncertainties

listed in Table 7.11. Therefore, the uncertainty associated with the precision of the

nonlinear fitting is neglected subsequently.

Three ∆χ2-values are negative in Table 7.11. In other words, the corresponding fit

resulted in a fit with a smaller χ2-value than the tilt-dependent fit listed in Table 7.2.

The parameter values associated with the negative ∆χ2-values in Table 7.11 are listed

in Table 7.12. The fitted parameter values are negligibly different. The slightly

smaller χ2-values are likely due to fitting 3 free parameters (the case for the values

in the first 3 columns in Table 7.12) as opposed to fitting 4 free parameters (the

case for the final column in Table 7.12). The difficulty of finding a minimum of

a highly nonlinear space increases rapidly with increasing dimension of the search

space. Additionally, the nonlinear least squares algorithm (Levenberg-Marquardt) is

known to be a local minimizer, and the aforementioned four fits had different initial

parameter values.

Table 7.12: Fitted parameter values for fits in Table 7.11 for which ∆χ2 < 0.

Parameter [units] B -1% Kθ 1% a -1% tilt-dependent †

Kc [×10−13 ergs] 8.5 8.5 8.5 8.5

B [×1012 ergs/cm4] 6.9 ‡ 7.0 7.0 7.0

Kθ [mN/m] 106.6 107.8 ‡ 106.8 106.7

a [Å] 17.5 17.7 17.5 ‡ 17.7

† values from Table 7.2

‡ indicates a fixed parameter value.
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Results for Many DOPC Samples

Many CCD exposures of the scattering from DOPC samples were analyzed, following

the analysis methodology described in Section 7.1. First, a kLB was substracted from

the measured scattering intensity (see Section 2.5.1), and then, the 2 box method was

used to remove residual background intensity (see Section 2.5.2). A similar fitting

qx, qz-fitting region was chosen for all of the exposures, see Fig. 6.1 specifically the

regions within the dashed cyan rectangles. Lr and Lz were fixed to sufficiently large

values to suppress their influence on SF
CCD,1, and F∆S

F
CCD,2 is neglected, as previously

argued in Section 7.4. Table 8.1 lists experimental parameter values, and Table 8.2

lists the fitted parameter values for DOPC exposures from 2013 - 2015. Each column

in a given year corresponds to a different part of the same DOPC sample. The final

row of Table 8.2 lists
(
χ2,��tilt

red /χ2,tilt
red

)
; the tilt-dependent χ2

red is about 20% smaller

than the tilt-indepedent χ2
red. Section 8.1 discusses the measured values of Kc and

Kθ and their associated uncertainties. Final values of Kc = 8.3 ± 0.6 × 10−13 ergs

and Kθ = 91± 7 mN/m are determined. In Section 8.2 the determined B-values are

further analyzed in order to evaluate the Hamaker parameter which mediates the van

der Waals interaction between bilayers.

166
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8.1 Kc and Kθ

Both the values of Kc and Kθ listed in Table 8.2 are plotted as a function of year in

Fig. 8.1. Besides experimental concerns, the year an exposure was taken is of little in-

terest. The more important consideration is that DOPC samples from different years

are different DOPC samples. Therefore, the year to year differences of the average

Kc- and Kθ-values (weighted by 1/χ2
red) and their spreads are listed in Table 8.3 and

interpreted as sample variation. The uncertainty values in Table 8.3 are much greater

than the uncertainty of the individual fitted parameter values due to the curvature of

the χ2-space, see Section 7.6. Therefore, the “intrinsic” uncertainty of the parameter

values was neglected. The 2013 and 2015 DOPC samples appear consistent with each

other but inconsistent with the 2014 sample; however, all averages and uncertain-

ties were calculated using fewer than 6 values. More statistically robust estimates of

Kc = 8.4± 0.6× 10−13 ergs and Kθ = 90± 7 mN/m are determined by averaging all

fitted values. The final averages and associated uncertainties are likely to have both

statistical and systematic contributions from both the X-ray scattering analysis and

the sample preparation.
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Figure 8.1: The tilt-dependent values of Kc and Kθ listed in Table 8.2 are plotted as
a function of year. In 2014, there were two exposures, both with fitted Kθ-value of
85 mN/m.

In principal, Kc and Kθ are mechanical properties of single membranes, and only

B is an attribute of the bilayer stack. However, all three moduli might function as

effective parameters in describing the bilayer stack height-height correlation function,

and therefore, the determined Kc- and Kθ-values could reflect a mixture of single
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Table 8.3: Average Kc- and Kθ-values for DOPC samples from 2013 - 2015.

Parameter [units] 2013 2014 2015 All

tilt
Kc [×10−13 ergs] 8.2± 0.7 7.9± 0.3 8.6± 0.6 8.3± 0.6

Kθ [mN/m] 93± 3 84± 3 97± 11 91± 7

��tilt Kc [×10−13 ergs] 7.0± 1.2 6.4± 0.1 7.3± 0.5 6.9± 0.8

and stacked bilayer properties. To assess this concern, the Kc- and Kθ-values listed

in Table 8.2 are plotted as functions of D in Fig. 8.2. The determined Kc- and Kθ-

values appear independent of the repeat distance perpendicular to the bilayer planes,

and therefore, they appear to be single membrane attributes consistent with their

theoretical definitions in Section 3.1.
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Figure 8.2: Tilt-dependent values of Kc and Kθ listed in Table 8.2 are plotted as
functions of D.

The tilt-dependent and tilt-independent Kc-values are listed in Table 8.3. The tilt-

dependent Kc-value is on average about 20% larger than the tilt-independent value.

This is understandable because the total softness of the membrane was formerly

modeled just by a Kc “spring constant”; adding another softening degree of freedom

requires Kc to increase for the same degree of overall softness. However, the system
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is more complex than two ideal springs in series since the system’s response to Kc

and Kθ is Qr-dependent. Furthermore, the inclusion of tilt should not greatly modify

the determined Kc-value compared to the tilt-independent analysis because the tilt-

dependent height spectrum is only inconsistent with the tilt-independent spectrum

for large Qr (short real space length scales), see Fig. 3.4.

Comparing to Literature Values

The composite tilt-dependent and -independent determined value of Kc/(kBT ) from

all three years is compared to some literature experimental and simulation values

listed in Table 8.4. The values listed above the single horizontal line were previously

summarized and reported [16]. The first “X-ray stacks” value is a literature average

using a tilt-independent analysis [48] on data taken before 2013. Red values were

determined in this thesis, and blue values were reported earlier by me using a tilt-

dependent analysis and DOPC exposures from 2013 [32]. 27 The 2013 - 2015 composite

tilt-independent Kc/(kBT )-value of 16.5 ± 1.9 is consistent with the corresponding

value of 18.2± 2.7 determined by others using DOPC data prior to 2013.

The Kc-values determined by the tilt-dependent analysis are more consistent with

the Kc-values determined by shape fluctuation analysis and molecular dynamics (MD)

simulations than the Kc-values determined by the tilt-independent analysis. However,

even the tilt-dependent “X-ray stacks” Kc-values are less than the values determined

by shape fluctuation analysis and most results from MD simulation. All five values

from MD simulations were determined using the same all-atom CHARMM simulation

but using different methodologies to extract a Kc-value. For the first three Kc-values,

different real space interpretations of the lipid director were used;

27The 2014 [32] and current X-ray scattering analysis software are slightly different. The 2014
analysis followed previous analyses [48] except that it used a structure factor expressed in cylin-
drical coordinates, see Section 5.1, and qy-dependent integration limits for the CCD integral, see
Section 5.3.5. Other modifications to the experimental structure factor detailed in Chapter 5 were
implemented after the submission of [32]. Both the current and the 2014 versions of the analysis
software were used to analyze DOPC exposures from 2013 and determined similar values of Kc and
Kθ; 8.2± 0.7× 10−13 ergs vs 8.3± 0.6× 10−13 ergs and 93± 3 mN/m vs 95± 7 mN/m for now and
2014, respectively.
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Table 8.4: Values of Kc/(kBT ) determined from various experimental procedures and
molecular dynamics simulation. Values were adjusted to 30 ◦C.

X-ray stacks MM GUVa tethersb GUV Shapesc GUV MD Simulation

18.2± 2.7 [16]B 19.1± 2.2 [87] 16± 2 [88] 26.5± 2.7 [89]

15.1± 1.6 [47]B 23± 2.2 [90] 23± 5 [91] 24± 2 [90]

16.5± 0.7 [32]B 26.6± 0.7 [25] 1

19.8± 1.4 [32]C 27.0 [25] 2

16.5± 1.9 B 25.4 [25] 3

19.8± 1.4 C 24.5 [25] 1

22.1± 1.1 [25] �

a micromechanical manipulation of giant unilamellar vesicles (GUV)
b pulling cylindrical tethers
c analysis of shapes
B tilt-independent analysis
C tilt-dependent analysis
1 2 3 See [25] Supporting Information; number corresponds to tilt definition in thesis text
� See [25] Supporting Information; used method described in [86]

1. unit vector which points from the midpoint between a lipid phosphorous atom

and glycerol C2 atom to the midpoint between the terminal methyl atoms on

the lipid tail

2. unit vector which points from phosphorous atom to the mean point between

terminal tail methyl atoms

3. unit vector which points from the glycerol backbone C2 atom to the mean point

between terminal tail methyl atoms,

and the spectrum associated with the longitudinal component of the director field

was analyzed, conceptually following [22]. The fourth Kc-value used Definition 1 for

tilt, and the height spectrum was analyzed. The fifth Kc-value was determined using

a real space analysis method first described by Khelashvili et al. [86]. Clearly, the

Kc-value determined from MD simulation is dependent on the details of the analysis

method [21], and for at least one of the methods the determined Kc-value is consistent

with the most recent tilt-dependent “X-ray stacks” value.

The determined value of Kθ is compared to literature values in Table 8.5. The

red value was determined in this thesis, and the blue value was reported earlier

by me using a slightly different tilt-dependent analysis and DOPC exposures only
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from 2013 [32]. The first two “Generic” Kθ-values are estimates based on relations

between a tilted lipid and its interfacial area or chain length, respectively. Both

models hypothesize that Kθ ≈ 2γow, where γow is the oil-water surface tension. 28

Table 8.5: Values of Kθ determined from experiments and MD simulations.

Kθ Temp.

Lipid [mN/m] [◦C] Method Ref.

DOPC

90± 7 30 LAXS

95± 7 30 LAXS [32]

24 (48 ?) 30 wide angle X-ray scattering [93]

∼80 † ‡ 30 united atom [23]

66± 2 1 24.9 all-atom CHARMM [25]

75 2 24.9 all-atom CHARMM [25]

56 3 24.9 all-atom CHARMM [25]

Generic

100

NA

coarse estimate [31]

100 coarse estimate [93]

160 † mean-field theory [94]

† 2× reported monolayer value
‡ assuming area is 70 Å2

? assuming basic unit is chains (molecules)
1 2 3 See Supporting Information; number corresponds to director definition in text

Similarly to the Kc-values determined from MD simulations, the determined Kθ-

values are sensitive to the definition of tilt; depending on the tilt definition, the

Kθ-values extracted from the simulation vary by about ±15%. The value reported

in [23] and the largest Kθ-value from [25] are only about 10 and 20% smaller than the

experimental Kθ-values, respectively. Yet another interpretation of the lipid director

may yield better agreement between the experimental Kθ-value and analysis of the

spectrum associated with the transverse component of the director spectrum [25].

Finally, the fields of molecular models could simply give different values even if the

analysis is perfect.

The inconsistency of the X-ray and MD simulation determined values of Kc and

Kθ is further evaluated by fitting measured X-ray data, fixing the value of Kθ to

28γow decreases by only ∼0.3%/◦C [92], suggesting that temperature differences between MD and
LAXS are insignificant in Table 8.5.
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be the MD simulation determined value of 66 mN/m. Table 8.6 lists the results

of fitting two exposures where Kθ was fixed. In both cases the determined Kc-value

increases but not by enough to agree with the Kc-value determined via MD simulation

(11.1± 0.3× 10−13 ergs). Also, while χ2
red only increases modestly, the increase in χ2

is more than 1000.

Table 8.6: Fitted parameter values for Kθ fixed to MD simulation determined value
of 66 mN/m.

2014 2015

Parameter [units]

D [Å] 61.1 63.8

Kc [×10−13 ergs] 8.5 8.2 9.3 8.5

B [×1012 ergs/cm4] 13 13 7 7

Kθ [mN/m] 66 † 80 66 † 107

a [Å] 18 16 23 18

χ2
red 2.574 2.544 1.512 1.471

† indicates a fixed parameter value.

Besides the X-ray scattering analysis detailed in this thesis, no other experimental

technique has measured Kθ. Both mechanical manipulation [15] and shape fluctua-

tion analysis [14, 17] of giant unilamellar vesicles are unlikely experimental candidates

for determining Kθ because they primarily probe long length scales for which Kθ only

marginally affects membrane mechanics [93]. Since Kθ most significantly influences

short length scales, measuring its value in real space may be experimentally imprac-

tical. In contrast, it is plausible that the far-field elastic scattering from single bilay-

ers could be analyzed to determine Kθ, see the second Subsection in Section 8.1.1.

Alternatively, the value of Kθ may be assessable by experimental techniques that

investigate membrane dynamics. However, complementary theoretical work remains

outstanding, not altogether unexpected given that theoretical and experimental work

on tilt-dependent membrane mechanics is rather recent.
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8.1.1 Future Work

Remarks Regarding Stacked Bilayers

Overall, the values of Kc and Kθ determined by the tilt-dependent analysis of X-

ray scattering from stacked lipid bilayers compare favorably with other experimental

methodologies as well as with simulations. Still, there remain inconsistencies worth

investigating. There are many possible reasons for the discrepancy between Kc and

Kθ-values determined by various methods as compared to the X-ray method detailed

in this thesis. Unlike all other methods in Table 8.4 which investigate single bilayers,

the samples in the X-ray scattering analysis are multilamellar, and in part, this differ-

ence may account for differences in the Kc-values listed in Table 8.4. Although, the

difference in determined Kc-values for single membrane techniques is at least as large

as the difference between X-ray stacks and shape analysis of GUVs. Additionally,

the Kc and Kθ-values determined by the tilt-dependent analysis of X-ray scattering

from stacked bilayers are not obviously corrupted by intermembrane interactions since

they do not appear to depend on D, see Fig. 8.2 and the associated discussion in the

second paragraph of Section 8.1.

The “X-ray stacks” tilt-dependent Kc-value may be inconsistent with Kc-values

determined by shape fluctuation analysis and simulations because the modeling of the

X-ray scattering from stacked bilayers remains inadequate, even after the implemen-

tation of a tilt-dependent model. In Section 7.1, it is shown that the tilt-dependent

model systematically deviates from the measured intensity, see Fig. 7.5. Critically,

the scaled residuals are larger for smaller qx. In other words, the tilt-dependent pre-

dictions are more accurate for shorter length scales as compared to longer length

scales. Both sample-dependent details and theoretical shortcomings could yield the

aforementioned long length scale discrepancies.

Long length scale correlations in the sample are sensitive to several sample-

dependent factors such as the domain distributions, the supporting substrate, the

sample’s free upper surface, and defects. Neglecting the scattering specific to the

aforementioned features and focusing on their effects on the stacked bilayers, the

primary effect of all these possibilities is to alter the boundary conditions for the

calculation of the height-height correlation function. In general, boundary conditions

more significantly affect long length scale correlations as compared to short length

scale correlations, possibly explaining the increased scaled residuals at smaller qx
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as compared to larger qx. Height-height correlation functions can be calculated for

boundary conditions other than periodic ones, and the corresponding X-ray scatter-

ing predictions can be compared to measurements. Such theoretical and numerical

endeavors are likely to be quite laborious because most boundary condition choices

lead to a less analytically tractable theory compared to periodic boundary conditions,

see Section 3.3.3. Additionally, the aforementioned increased scaled residuals occur

at 0.01 . qx . 0.1 Å−1 which correspond to in-plane lengths between about 60 and

600 Å. The current analysis suggests that the in-plane size of sample domains are

much greater than 600 Å (see Section 7.2), and therefore, boundary conditions are

unlikely to be the most significant source of deviations between the current analysis

and the X-ray scattering measurements.

The deviations between the tilt-dependent X-ray predictions and the measured

intensity at 0.01 . qx . 0.1 Å−1 may be attributable to deficiencies of the bilayer

stack free energy functional, see Section 3.1 specifically Eq. (3.4). Conceptually, the

stacked bilayer free energy can be decomposed into terms dependent on fluctuations

within a given membrane (intramembrane terms) and terms dependent on fluctuations

that explicitly couple different membranes (intermembrane terms). Fu Eq. (3.4) is

reproduced and the intramembrane and intermembrane terms are indicated by red

and blue underlines, respectively,

Fu =
1

2

∑
j

∫
Ap

d2r
[
Kc

(
∇2z+

j + ∇ · m̂j

)2
+Kθ|m̂j|2 +B

(
z+
j+1 − z+

j

)2
]
. (8.1)

Within the complete Watson et al. model [1], there are several more terms than in

Eq. (8.1), but the majority of additional terms describe the peristaltic contributions

to the single membrane free energy. Since the deviations between the current theory

and X-ray measurements occur for qx . 0.1 Å−1 (in-plane lengths greater than about

60 Å), the peristaltic modes which correspond to thickness fluctuations are unlikely

to be significant for in-plane lengths much greater than the bilayer thickness (about

45 Å).

Alternatively, the intermembrane term could be extended to be a function of fields

besides the bilayer midplane field z+
j . Fully hydrated bilayers in a stack are far enough

apart that fields involved in the peristaltic part of the complete Watson model are

unlikely to be significantly correlated between different membranes. Still, neglecting



Chapter 8. Results for Many DOPC Samples 177

protrusions, there are two fields besides z+
j involved in the undulation part of the

Watson model to consider; m̂j(r) and εj(r), where εj describes the deviations of the

surface separating the two monolayer leaflets from z+
j [1]. Possible new harmonic

intermembrane terms include

1

2
B′
(
ε+
j+1 − ε+

j

)2
(8.2)

and

1

2
B′′ |m̂j|

(
z+
j+1 − z+

j

)
, (8.3)

where B′ and B′′ are new bulk moduli and the m̂-dependent term follows from sym-

metry arguments [40] (see pp. 337-339). However, these new terms may be less

significant than known anharmonic intermembrane interactions dependent on z+
j [95].

The deviations between the tilt-dependent X-ray predictions and the measured

intensity may be related to inadequacies of the model bilayer electron density, see

Section 3.2.1 specifically Eq. (3.7) reproduced below,

ρj(r, z) = ρs

( [
z − jD − z+

j (r)
]

Ψj(r), Pj(r)
)
. (8.4)

The current electron density ρj(r, z) Eq. (8.4) is a minor extension of the classic

smectic A electron density [40]. ρj(r, z) 6= ρs(z) primarily because of fluctuations

in z+
j (r), where ρs(z) is the electron density of a single static membrane inherently

broadened by protrusion modes, see Section 3.2.1; the geometric factor ψj(r) and the

en masse peristaltic field Pj(r) are of secondary importance. To predict the X-ray

scattering for 0.01 . qx . 0.1 Å−1 (in-plane lengths between 60 and 600 Å), it may be

necessary to express the bilayer electron density explicitly respecting internal degrees

of freedom. For example, the bilayer electron density could be expressed as the

sum of monolayer or lipid molecule electron densities. Either of the aforementioned

perspectives is likely to yield a bilayer electron density in which fields other than z+
j

start to become relevant.
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Complementary Single Membrane X-ray Experiment and Analysis

In principal, the X-ray scattering from single lipid bilayers could be measured and

analyzed to determine Kc and Kθ, thereby probing the extent to which the values

determined using the X-ray stacks methodology deviate from single membrane values.

Instead of a stacked bilayer free energy functional, a single (s) membrane model, like

Fs Eq. (3.3), could be used. The predicted X-ray scattering would be of a form similar

to Eq. (3.20) except that the subscript zeros and sum over out-of-plane index values

are discarded,

Is(q) ≡
∫ ∫

d2r d2r′ eiqr·(r−r′)exp

{
−q

2
z

2

〈[
z+(r)− z+(r′)

]2〉}〈|F (r, qz)|2
〉
, (8.5)

where

F (r, qz) ≈
∫ ∞
−∞

dz̃
ρs[z̃, P (r)]

〈Ψ〉
exp {iqz z̃/ 〈Ψ〉} . (8.6)

The single membrane height-height correlation function
〈

[z+(r)− z+(r′)]
2
〉

can be

derived using Fs Eq. (3.3). The analysis of the described scattering experiment is

straightforward; however, the scattering experiment is quite challenging. To reach

most single membrane samples, the incident X-rays must travel a significant distance

through bulk water, greatly attenuating both the incident X-ray intensity and scatter-

ing intensity. Additionally, since scattering intensity is proportional to the amount

of material in the X-ray beam, the scattering intensity from a single membrane is

likely much weaker than the scattering from stacked bilayers. The aforementioned

experimental issues can be mitigated by using high energy X-rays (longer 1/e-length

in water) and large surface area membranes. Already, the X-ray scattering from

single solid supported and “floating” bilayers at the solid-water interface have been

measured and analyzed [96, 97, 98, 99, 100, 101]. Removing the supporting substrate

entirely such as in vesicles has the advantage that the free energy model does not

contain a term describing the bilayer-substrate interaction [101]. A single GUV could

be held at the end of a pipette while X-rays scatter from the opposite end of the

vesicle. Further, the vesicle’s surface tension could be modified in situ between X-ray

exposures.
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8.2 B

In Table 8.2, the value of the bulk modulus B decreases as a function of increasing

D, a previously described effect [102]. The tilt-independent B-values are often larger

than the values of B determined by the tilt-dependent analysis. The variation in

the value of B is related to the increased Kc-value determined by the tilt-dependent

analysis, and the different roles of Kc and B in the relation for the height-height

correlation function hj(r/ξ, `, τ),

hj(r/ξ, `, τ) =
D2η

2π2

∫ τ

0

dv
1− J0

(√
2v r

ξ

)(√
1 + v2

1+v`
− v√

1+v`

)2j

v√
1+v`

√
1 + v2

1+v`

, (8.7)

where

ξ = 4
√
Kc/B (8.8)

and

η =
πkBT

2D2
√
KcB

, (8.9)

(originally from Eqs. (3.81), (3.59), and (3.79), respectively). ξ is an in-plane bending

dependent length scale, whereas η is a multiplicative factor. For small r, the value of

hj(r/ξ, `, τ) is proportional to η and the integrand is independent of ξ. 29 hj(r/ξ, `, τ)

Eq. (8.7) is plotted in Fig. 8.3 using the last 2014 column in Table 8.2. The tilt-

dependent and -independent correlation functions are similar for small r (r . ξ,

where ξ ≈ 35 Å is typical) and j, but are increasingly dissimilar for increasing r and

j. Intuitively, the best tilt-independent parameter values are the ones that yield a

height-height correlation function hj(r/ξ, 0,∞) that mimics hj(r/ξ, `, τ) calculated

using the tilt-dependent parameter values. Since the tilt-independent Kc-value is

less than the tilt-dependent Kc, the tilt-independent B-value must be greater than

29However, τ is dependent on ξ. For large v, the integrand of Eq. (8.7) decays like v−1. Therefore,
for small r, Eq. (8.7) is approximately independent of ξ.
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the tilt-dependent B for the tilt-dependent and -independent η-values to not be too

dissimilar. If the η-values significantly differ, the tilt-dependent and -independent

hj(r/ξ, `, τ) will disagree for small r.
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Figure 8.3: Tilt-dependent and -independent height-height correlation functions
hj(r/ξ, `, τ) and hj(r/ξ, 0,∞), see Eq. (8.7), are plotted as functions of r using the
red parameter values in Table 8.2.

Using the values of B and D in Table 8.2, the Hamaker parameter mediating

the van der waals interaction between bilayers is determined. First in Section 8.2.1,

following the derivation using the discrete smectic A model [58], the fluctuation free

energy per unit area Ffl is derived using the tilt-dependent model. Then in Sec-

tion 8.2.2, the values of B and D in Table 8.2 and Ffl are used to determine the

fluctuation pressure, and subsequently, the Hamaker parameter is evaluated.
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8.2.1 Fluctuation Free Energy: ∆Ffl

In Appendix D.4, the tilt-dependent fluctuation free energy per unit area of one

bilayer ∆F̃fl is derived. Quoting the final result Eq. (D.29),

∆F̃fl =
kBTD

8π2

∫ π/D

−π/D
dQz

∫ π/a

0

dQr Qr ln

(
1 +

4 sin2 (QzD/2)

ξ4Q4
r

(
1 + ξ2

θQ
2
r

))
.

(8.10)

In the limit ξθ → 0 and a→ 0,

lim
ξθ→0
a→∞

∆F̃fl ≡ ∆F̃��tiltfl (8.11)

=
kBTD

8π2

∫ π/D

−π/D
dQz

∫ ∞
0

dQr Qr ln

(
1 +

4 sin2 (QzD/2)

ξ4Q4
r

)
(8.12)

=
kBT

2π

√
B

Kc

, (8.13)

where ∆F̃��tiltfl is the tilt-independent fluctuation free energy per unit area of one bilayer

and was previously derived [58].

8.2.2 Hamaker Parameter

The D-spacing is hypothesized to be determined by a competition between several

pressures [58, 102]: the osmotic pressure Posm, the fluctuation pressure Pfl, the repul-

sive hydration pressure Phyd, and the van der Waals pressure PvdW,

0 = −Posm(D′w) + Pfl(D′w) + Phyd(D′w)− PvdW(D′w), (8.14)

where D′w is the interbilayer water spacing,
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Phyd(D′w) = Phexp {−D′w/λh} , (8.15)

PvdW(D′w) =
H

6π

(
1

D′3w
− 2

(D′w +D′B)3 +
1

(D′w + 2D′B)3

)
, (8.16)

H is the Hamaker parameter, and D′B = 44.8 Å [102] is the steric bilayer thickness,

D′w ≡ D −D′B. (8.17)

Ph = 0.55× 108 J/m3 and λh = 2.2 Å are well-determined from previous work [103].

At full hydration Posm = 0, and therefore, if Pfl is known, the only unknown in

Eq. (8.14) is H the Hamaker parameter.

Using the fitted parameter values from Table 8.2, Pfl is determined. Only the tilt-

dependent quantities are significantly discussed, but the corresponding tilt-independent

analysis is also completed to compare the results. First, ∆Ffl Eq. (8.10) is evaluated

and plotted as a function of D′w in Fig. 8.4. The dashed lines are exponential fits to

the data, suggesting that

∆F̃fl ∼ exp {−D′w/λfl} , (8.18)

where λfl = 5.3 ± 0.5 Å (λ��tiltfl = 5.9 ± 0.4 Å). Of note, the analytical theories that

predict the exponential dependence of ∆F̃fl on D′w, see Eq. (8.18), also predict that

λfl = 2λh [103]. For both the tilt-dependent and -independent models, λfl > 2λh =

4.4 Å, consistent with previous experimental work, see Table 8.7. Using Eq. (8.18),

the fluctuation pressure is

Pfl ≡ −

(
∂∆F̃fl

∂D′w

)
T

=
∆F̃fl

λfl

. (8.19)

At full hydration (FH) Eq. (8.14) simplifies,
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Figure 8.4: ∆F̃��tiltfl and ∆F̃fl are plotted as functions of D′w. The dashed lines are
exponential fits to the correspondingly colored data.

Table 8.7: Tilt-dependent and -independent values of λfl and H.

Parameter [units] tilt ��tilt

λfl [Å] 5.3± 0.5 5.9± 0.4 5.8 [102] 5.9 [103]

H [×10−21 J] 6.4± 0.4 6.1± 0.4 5.4 [102]
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0 = Pfl(D′w) + Phyd(D′w)− PvdW(D′w). (8.20)

Using Pfl Eq. (8.19), ∆F̃fl Eq. (D.29), and DFH = 63.8 Å, the Hamaker parameter is

H = 6.4± 0.4× 10−21 J (H��tilt = 6.1± 0.4× 10−21 J). H��tilt is slightly larger than the

previously determined value of 5.4 × 10−21 J [102]. Unlike the current analysis, the

previous work only considered data from a single DOPC sample. The tilt-dependent

H is greater than H��tilt because PvdW must increase to balance the increased Pfl.



Chapter 9

Conclusions

This thesis has reported experimental evidence supporting the enrichment of the clas-

sic Helfrich-Canham membrane model to include tilt-dependent terms. The current

work has described a tilt-dependent analysis of the X-ray scattering from oriented

stacks of fluid phase lipid bilayers. Several X-ray exposures from different DOPC

samples have been analyzed, and final single membrane mechanical moduli values of

Kc = 8.4± 0.6× 10−13 ergs and Kθ = 90± 7 mN/m were determined at 30 ◦C. The

tilt-dependent Kc-value is more consistent with literature values than the Kc-value de-

termined using a tilt-independent analysis. However, the determined tilt-dependent

Kc-value is between 15 and 25% less than most values determined from MD sim-

ulations. The experimentally determined Kθ-value is between 10 and 20% greater

than values reported from MD simulations. As of yet, there is no other experimental

technique that has determined the value of Kθ.

The tilt-dependent X-ray scattering analysis is briefly summarized. First in Chap-

ter 3, a tilt-dependent stacked bilayer free energy functional was hypothesized, based

on a recent single membrane tilt-dependent free energy. Then, a tilt-dependent

stacked bilayer electron density was posited, and a novel form factor / structure factor

separation was derived. Within this analysis, the height-height correlation function

remains the most important statistical quantity for predicting the X-ray scattering

from stacked bilayers. The tilt-dependent height-height correlation function was de-

rived, and in Chapter 4 an approximate analytic form for long in-plane length scales

was derived. Like the tilt-independent theory, the tilt-dependent height-height corre-

lation function logarithmicly diverges with increasing in-plane length scale, yielding

quasi-long range order of the stacked bilayers. In Chapter 5 the theoretically pre-
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dicted intensity was modified by several sample concerns including domain sizes and

mosaicity and several experimental issues such as X-ray beam coherence, geometric

broadening, and absorption of the incident and scattered X-rays. In Chapter 6, it was

shown that all three mechanical moduli Kc, B (bulk modulus that mediates inter-

membrane interactions), and Kθ are plausibly determined by the new tilt-dependent

X-ray scattering analysis. In Chapter 7 measured scattering intensity from a single

X-ray exposure of stacked DOPC bilayers was analyzed using both tilt-dependent

and -independent models. The tilt-dependent model was shown to better account for

the measurements, supporting the extension of the classic Helfrich-Canham model to

include a tilt degree of freedom. Finally in Chapter 8, many exposures from three

different DOPC samples were analyzed yielding the average Kc- and Kθ-values and

associated uncertainties quoted above.

Much theoretical and experimental work relies upon the Helfrich-Canham model of

membrane mechanics. It is unlikely that the recent tilt-dependent models will quan-

titatively influence all previous membrane-related work; however, the tilt-dependent

perspective in which internal degrees of freedom are quantitatively considered may

eventually be pervasive in the membrane research community. As mentioned in the

Introduction, the relatively recent tilt-dependent models should motivate new and

exciting future work, especially now that they are experimentally supported.
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Appendix A

Chapter 3: Some Details in

Theoretical Derivations

A.1 Free Energy Involving a Hermitian Matrix

In Section 3.3.1, the stacked membrane free energy functional Fu Eq. (3.39) is ex-

pressed in Fourier space in terms of a matrix equation involving a Hermitian matrix,

see Eq (3.51). Below, the relation between a Hermitian matrix and various thermal

averages is derived.

If orthonormal eigenvectors of a Hermitian matrix H are chosen and written as

the columns of an orthogonal matrix, O, then H can be expressed as

H = ODOT = ODO−1, (A.1)

where D is a diagonal matrix whose elements are the eigenvalues of H, λi. The

spectral theorem ensures that such a decomposition always exists for a Hermitian

matrix. Additionally, the fact the OT = O−1 for an orthogonal matrix was utilized.

Substituting Eq. (A.1) into the general form for a free energy functional written in

matrix form, see Eq. (3.51) for an example,
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F =
1

2

∑
Q

〈f(−Q)|H|f(Q)〉 (A.2)

=
1

2

∑
Q

〈
f(−Q)|ODO−1|f(Q)

〉
(A.3)

=
1

2

∑
Q

〈g(−Q)|D|g(Q)〉 (A.4)

=
1

2

∑
Q

∑
i

λi 〈g(−Q)|g(Q)〉 , (A.5)

where normal coordinates, |g〉 = O−1|f〉, were introduced. Applying the equipartition

theorm to the normal coordinates, gi(Q),

λi

〈
gi(Q)gj(Q

′)
〉

th

2
=
kBT

2
δi,jδQ,−Q′ (A.6)

where 〈〉th denotes a thermal average. Rewriting Eq. (A.6) as a matrix equation,

〈
|g(Q)〉〈g(Q′)|

〉
th

= kBTD−1δQ,−Q′ . (A.7)

Working towards an equation in terms of |f(Q)〉 by rewriting Eq. (A.7),

〈
O|g(Q)〉〈g(Q′)|O−1

〉
th

= kBTOD−1O−1δQ,−Q′ (A.8)〈
|f(Q)〉〈f(Q′)|

〉
th

= kBTH−1δQ,−Q′ . (A.9)

Various thermal averages involving |f(Q)〉 can be expressed in terms of H−1.

A.2 Ψj(r)

In Section 3.2.2 the small variance of Ψ0(r) was used to justify a simplification of

Ij(q) in Eq. (3.17). The following several subsections validate the aforementioned

claim regarding Ψ0(r). In Subsection A.2.1, Ψj(r) is expressed in terms of more

analytically useful fields. Then, in Subsection A.2.2 the variance of Ψ0(r) is shown
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to be small. Finally, the transition from Ia
j (q) Eq. (3.17) to Ib

j (q) Eq. (3.20) is

established in Subsection A.2.3.

A.2.1 Reformulation

Using the definition of Ψj, Eq. (3.7),

Ψ0 =
−N

(1)
0 · ẑ−N

(2)
0 · ẑ

N
(1)
0 · n

(1)
0 + N

(2)
0 · n

(2)
0

(A.10)

=
cosα

(1)
b + cosα

(2)
b

cosα
(1)
t + cosα

(2)
t

, (A.11)

where α
(β)
b is the angle between the local bilayer normal −N(β) and ẑ and α

(β)
t is the

angle between the local lipid director n(β) and N(β). β identifies the upper (1) or

lower (2) monolayer leaflet. Assuming that α
(β)
b and α

(β)
t are small, Ψ0 Eq. (A.11) is

approximated,

Ψ0 ≈
2 +

(
α

(1)
b

)2
+
(
α

(2)
b

)2

2

2 +
tan2 α

(1)
t +tan2 α

(2)
t

2

(A.12)

≈

1 +

(
α

(1)
b

)2

+
(
α

(2)
b

)2

4

(1− tan2 α
(1)
t + tan2 α

(2)
t

4

)
. (A.13)

α
(β)
b ≈ ∇z(β) for small amplitude out-of-plane fluctuations, and from the definition

of m, it follows that

∣∣m(β)
∣∣2 = tan2 α

(β)
t ≈

∣∣m(β)
xy

∣∣2 . (A.14)

Substituting into Ψ0 Eq. (A.13),
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Ψ0 ≈

1 +

(
∇z

(1)
0

)2

+
(
∇z

(2)
0

)2

4


1−

∣∣∣m(1)
0,xy

∣∣∣2 +
∣∣∣m(2)

0,xy

∣∣∣2
4

 . (A.15)

Using the definitions [1],

z+ ≡ z(1) + z(2)

2
, (A.16)

z− ≡ z(1) − z(2) − 2b0

2
, (A.17)

m̄ ≡ m
(1)
xy + m

(2)
xy

2
, (A.18)

(A.19)

and

m̂ ≡ m
(1)
xy −m

(2)
xy

2
, (A.20)

Ψ0 Eq. (A.15) is rewritten in terms of fluctuation fields expressly involved in the

complete Watson Model [1],

Ψ0 ≈ 1 +
1

2

(∣∣∇z+
0

∣∣2 +
∣∣∇z−0

∣∣2 − |m̂0|2 − |m̄0|2
)
, (A.21)

where terms of higher order than the free energy functional (quartic vs quadratic)

were neglected.

A.2.2 Variance

The variance of Ψ0,

Var [Ψ0(r)] =
〈
|Ψ0|2

〉
− |〈Ψ0〉|2 , (A.22)
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is written in terms of known fluctuation fields using Ψ0 Eq. (A.21),

Ψ0 ≈ 1 +
1

2

(∣∣∇z+
0

∣∣2 +
∣∣∇z−0

∣∣2 − |m̂0|2 − |m̄0|2
)

(A.23)

≡ 1 +
4∑
i=1

ψi. (A.24)

Later sums in this section will appear without explicit limits. Substituting Ψ0

Eq. (A.24) into Var [Ψ0(r)] Eq. (A.22) and simplifying,

Var [Ψ0] ≈
〈∣∣∣1 +

∑
ψi

∣∣∣2〉− ∣∣∣1 +
∑
〈ψi〉

∣∣∣2 (A.25)

= 1 + 2
∑
〈ψi〉+

〈∣∣∣∑ψi

∣∣∣2〉− [1 + 2
∑
〈ψi〉+

∣∣∣〈∑ψi

〉∣∣∣2] (A.26)

=

〈∣∣∣∑ψi

∣∣∣2〉− ∣∣∣〈∑ψi

〉∣∣∣2 . (A.27)

Var [Ψ0] Eq. (A.27) is necessarily small since it involves quantities less than one and

raised to the fourth power. While some of the terms in Var [Ψ0] Eq. (A.27) can

be evaluated, many terms involve a thermal average of a quartic quantity which is

beyond the order of the free energy functional.

A.2.3 Implications

In Section 3.2.2 the small variance of Ψ0(r) was utilized to simplify an ensemble

average, compare Ia
j Eq. (3.17) and Ib

j (3.20),

〈
eiqz[z

+
0 (r)−z+

0 (r′)] |F0(r, qz)|2
〉
≈
〈
eiqz[z

+
0 (r)−z+

0 (r′)]
〉 〈
|F0(r, qz)|2

〉
. (A.28)

The approximation made in Eq. (A.28) is quantitatively evaluated by investigating

the difference of the two sides,

〈
eiqz[z

+
0 (r)−z+

0 (r′)] (|F0(r, qz)|2 −
〈
|F0(r, qz)|2

〉)〉
. (A.29)
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Specifically, it will be shown that

(
|F0(r, qz)|2 −

〈
|F0(r, qz)|2

〉)
≈ 0. (A.30)

Neglecting, the z+
j -dependent part of Eq. (A.29) and using the defintion of F0(r, qz)

Eq. (3.18),

∫ ∫
dz dz′ ρs[z, P0(r)]ρs[z

′, P0(r)]

eiqz( z
Ψ0(r)

+ z′
Ψ0(r′)

)
Ψ0(r)Ψ0(r′)

− e
iqz

z+z′
〈Ψ0〉

〈Ψ0(r)〉2

 . (A.31)

Using Ψ0(r) ≡ 1− δ(r) and δ′ as shorthand for δ(r′),

1

Ψ0(r)
≡ 1

1− δ
=
∞∑
n=0

δn (A.32)

and

exp

{
iqz

(
z

Ψ0(r)
+

z′

Ψ0(r′)

)}
≈ eiqz(z+z′)eiqz(zδ+z′δ′) (A.33)

= eiqz(z+z′)
∞∑
n=0

[iqz(zδ + z′δ′)]n

n!
(A.34)

since δ � 1. Using Eqs. (A.32) and (A.34), the Ψ0-dependent part of Eq. (A.31) is

rewritten,
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e
iqz
(

z
Ψ0(r)

+ z′
Ψ0(r′)

)
Ψ0(r)Ψ0(r′)

− e
iqz

z+z′
〈Ψ0〉

〈Ψ0〉2
(A.35)

≈ eiqz(z+z′)·[
∞∑
n=0

δn
∞∑
m=0

δ′m
∞∑
j=0

[iqz (zδ + z′δ′)]j

j!
−
∞∑
n=0

〈δ〉n
∞∑
m=0

〈δ〉m
∞∑
j=0

[iqz (z + z′) 〈δ〉]j

j!

]

∝
∞∑
n=0

∞∑
m=0

∞∑
j=0

(iqz)
j

j!

[
δnδ′m [(zδ + z′δ′)]

j − 〈δ〉n 〈δ〉m [(z + z′) 〈δ〉]j
]
. (A.36)

Using the binomial formula

(x+ y)j =

j∑
k=0

(
j

k

)
xj−kyk, (A.37)

Eq. (A.36) is further rewritten,

∝
∞∑
n=0

∞∑
m=0

∞∑
j=0

j∑
k=0

(
j

k

)
(iqz)

j

j!
〈δ〉n 〈δ〉m (z 〈δ〉)j−k(z′ 〈δ〉)k·[

δnδm(zδ)j−k(z′δ′)k

〈δ〉n 〈δ〉m (z 〈δ〉)j−k(z′ 〈δ〉)k
− 1

]
(A.38)

∝
∞∑
n=0

∞∑
m=0

∞∑
j=0

j∑
k=0

(
j

k

)
(iqz)

j

j!
〈δ〉n 〈δ〉m (z 〈δ〉)j−k(z′ 〈δ〉)k· (A.39)[(

δ

〈δ〉

)n+j−k (
δ′

〈δ〉

)m+k

− 1

]
. (A.40)

Given Var [Ψ0] is small (see Section A.2.2), Var [δ] is also small. Therefore, 〈δ〉 ≈ δ,

and consequently, the term in square brackets in Eq. (A.40) is approximately zero.

Since Eq. (A.40) is proportional to the error in the approximation in Eq. (A.28), it

has been shown that
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〈
eiqz[z

+
0 (r)−z+

0 (r′)] |F0(r, qz)|2
〉
≈
〈
eiqz[z

+
0 (r)−z+

0 (r′)]
〉 〈
|F0(r, qz)|2

〉
, (A.41)

the original assertion in Section 3.2.2, compare Eqs. (3.18) and (3.19).



Appendix B

Cartesian Structure Factor

In Section 5.1, the stacked membrane sample is assumed to be composed of cylindrical

domains. Previously, the domains were assumed to be rectangular cuboids [44, 48],

partially motivated by considering the effect of X-ray coherence [48]. Assuming rect-

angular domains the structure factor was expressed in Cartesian coordinates, simpli-

fying many subsequent calculations (see Chapter 4 [48]). It will be shown that the

Cartesian structure factor predicts X-ray scattering features that are not observed.

The cylindrical coordinate many domain (MD) structure factor has been previ-

ously presented, see Eq. (5.9),

SMD(qr, qz) =

∞∑′

j=0

Hz(jD) cos(qzjD)

∫ ∞
0

dr rHr(r)J0(qrr)G(r, j, qz). (B.1)

For comparison, the Cartesian (c) structure factor, Eq. (4.5) in [48], is reproduced,

Sc
MD(qx, qy, qz)

=

∞∑′

j=0

Hz(jD) cos(qzjD)

∫ ∞
0

dx Hx(x) cos(qxx)

∫ ∞
0

dy Hy(y) cos(qyy)G(r, j, qz),

(B.2)

where Eq. (B.2) has been written to emphasize its similarities to Eq. (B.1). Indepen-

dent of specific choices regarding the scattering pair correlation function G(r, j, qz)
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or finite size effects (Hr, Hz, Hx, Hy), several general features of the structure factors

can be discussed. SMD and Sc
MD will be large for qz = 2πh/D because of the factors

of cos(qzjD) where h ∈ N. SMD will also be large for qr = 0 because of the Bessel

function, and similarly, Sc
MD will be large for qx = 0 or qy = 0.

SMD Eqs. (B.1) and Sc
MD Eq. (B.2) are shown in Fig. B.1 for qz = 2π/D as

functions of qx and qy. The cylindrical and Cartesian symmetries are apparent in the

left-hand and right-hand sides, respectively. In the Cartesian contour plot (right-hand

side), the ridges of large intensity along qx = 0 and qy = 0 are related to the features

previously referred to as “spikes”, see pp. 66 [48]. The “spikes” could be referred to

as Caillé sheets since they emanate from Caillé peaks [104].

qx [Å−1] qx [Å−1]

q y
[Å
−

1
]

q y
[Å
−

1
]

Figure B.1: Contour plots of SMD

(√
q2
x + q2

y , 2π/D
)
, left-hand side, and

Sc
MD(qx, qy, 2π/D), right-hand side, are shown. A logarithmic grayscale indicates the

value, where white corresponds to most intense. Typical parameter value were used
to calculate SMD and Sc

MD.

To calculate the X-ray scattering intensity corresponding to an exposure in which

the bilayer stack was continuously rotated, the structure factor must be integrated

over all sampled incident angles, see Section 5.3.5,

IF
CCD(qx, qz) ∼

∫ qy,ub

qy,lb

dqy SMD(qx, qy, qz). (B.3)

Previously, the integration range was approximated by a qx-independent range, see

Fig. 4.5 pp. 60 in Ref. [48]. In Section 5.3.5, qx-dependent integration limits were

derived. Examples of the qx-independent and qx-dependent integration ranges are

shown in Fig. B.2. The solid and dashed lines indicate the range of qy values which are



Appendix B. Cartesian Structure Factor 198

summed to determine IF
CCD(qx, qz). The qx-independent limits always include qy = 0.

However, only Sc
MD (not SMD) has a ridge of intensity along qy = 0. Therefore, using

qx-independent limits for the CCD integral is a worse approximation in the Sc
MD case

as compared to the SMD case. If qx-independent limits are used along with Sc
MD, the

Caillé sheets are predicted at larger qx in IF
CCD(qx, 2πh/D) than in the qx-dependent

integration limits case because the qx-independent limits always include the ridge of

intensity centered at qy = 0.

Figure B.2: A subregion of the qx, qy-region in the right-hand plot of Fig. B.1 is
shown. Note, the qx- and qy-axes show different ranges. The yellow dashed lines and
red solid lines indicate the range of integrated qy-values for several qx-values for the
qx-independent and qx-dependent integration limits, respectively.

The Cartesian structure factor Sc
MD in Fig. B.1 predicts a feature in the X-ray

scattering that is not experimentally observed. For a fixed incident angle exposure,

a row of CCD pixels (running px) corresponds to a trajectory in q-space. The qz-

value for each pixel in a row is nearly constant, and therefore, the q-space trajectory

is approximately qz-independent (qx, qy-trajectory). In Fig. B.3, Sc
MD is shown as a

function of qx and qy for qz = 2π/D, and qx, qy-trajectories are plotted for various

incident angles, ω. For ω = sin−1
(
hλ
2D

)
, a trajectory includes the point (qx, qy) = (0, 0).

The depicted ω-values were chosen to sample a range of ω about the Bragg angle

corrresponding to D = 62.8 Å, λ = 1.1775 Å and h = 1 (ωB
1 ≈ 0.54◦).
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In Fig. B.4 the intensity along the qx, qy-trajectories depicted in Fig. B.3 is plotted

as a function of qx. The qx-axis is approximately a linear function of px. For ω > ωB
1 ,

the intensity does not monotonically decay for increasing qx. Instead, a peak-like

feature sharpens for increasing ω−ωB
1 . The feature is due to the trajectories starting

on the qy > 0 side of the intensity ridge and ending on the qy < 0 side. The peak-like

feature is predicted for all qz = 2πh/D at qx-values dependent on ω. For comparison,

the intensity of SMD along the same qx, qy-trajectories depicted in Fig. B.3 never show

a peak-like feature because SMD does not have ridges of large intensity along qx = 0

and qy = 0, see for example the left-hand side of Fig. B.1. The peak-like feature is

not observed experimentally, and therefore, SMD is favored as compared to Sc
MD.

Figure B.3: A subregion of the qx, qy-region in the right-hand plot of Fig. B.1 is shown.
Note, the qx- and qy-axes show different ranges. The yellow solid and dashed lines
indicate the qx, qy-trajectories probed by a row of CCD pixels during a fixed angle
exposure. The h = 1 Bragg angle is ωB

1 ≈ 0.54◦.
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Figure B.4: The predicted intensity along the solid and dashed yellow lines involving
Sc

MD in Fig. B.3 is plotted as a function of qx for qz = 2π/D; the intensity is normalized
at qx = 0.01 Å−1. For increasing ω beyond ωB

1 ≈ 0.54◦, a peak in intensity develops,
and its center shifts to greater qx.



Appendix C

Form Factor Details

C.1 Fluctuations in Electron Density

In Section 3.2.2 the scattering intensity was decomposed into the sum of two terms,

I(q) ≈
∣∣∣〈F0(r, qz)〉

∣∣∣2 S(q) + F∆(qz)S0(q), (C.1)

where

F∆(qz) ≡
[〈
|F0(r, qz)|2

〉
−
∣∣∣〈F0(r, qz)〉

∣∣∣2] . (C.2)

The overline indicates an in-plane spatial average. Commonly, the second term in

Eq. (C.1) is assumed to be negligible compared to the first term; however, the relative

magnitude of the terms is unknown. Retaining both terms, I(q) Eq. (C.1) is further

developed in Chapter 5, considering various theoretical and experimental issues

IF
CCD(qx, qz) =

∣∣∣〈F0(r, qz)〉
∣∣∣2

qz
SCCD(qx, qz) +

F∆(qz)

qz
S0,CCD(qx, qz). (C.3)

In Section 6.4, SF
CCD,1 and SF

CCD,2 were calculated and found to have similar magni-

tudes. Therefore, the outstanding comparison is between
∣∣∣〈F0(r, qz)〉

∣∣∣2 and F∆(qz).〈
|F0(r, qz)|2

〉
and

∣∣∣〈F0(r, qz)〉
∣∣∣2 are evaluated using two different models for the

201
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fluctuations of the electron density profile (EDP). Assuming ergodicity, many snap-

shots from a molecular dynamics simulations at different times could be used to

estimate
〈
|F0(r, qz)|2

〉
and

∣∣∣〈F0(r, qz)〉
∣∣∣2. As such snapshots are not readily available,

the present analysis uses an in-plane and time averaged electron density of DOPC

from simulation

ρ∗sim(z) =
〈
ρsim(r, z)

〉
(C.4)

= 〈ρsim(z)〉 . (C.5)

To assess
〈
|F0(r, qz)|2

〉
and

∣∣∣〈F0(r, qz)〉
∣∣∣2, a three-dimensional EDP is required, but

ρsim(z) is one-dimensional. It is assumed that

〈
|F0(r, qz)|2

〉
≈
〈∣∣∣F0(r, qz)

∣∣∣2〉
=
〈
|F0(qz)|2

〉
=

〈∣∣∣∣∣
∫ D/2

−D/2
dz ρsim(z)eiqzz

∣∣∣∣∣
2〉

(C.6)

=
〈
|F (qz)|2

〉
(C.7)

and

∣∣∣〈F0(r, qz)〉
∣∣∣2 ≈ ∣∣∣〈F0(r, qz)

〉∣∣∣2
= |〈F0(qz)〉|2

=

∣∣∣∣∣
〈∫ D/2

−D/2
dz ρsim(z)eiqzz

〉∣∣∣∣∣
2

(C.8)

= |〈F (qz)〉|2 . (C.9)

Fluctuations in ρsim(z) are hypothesized to be out-of-plane extensions and com-

pressions. The energy required to extend or compress the membrane laterally is

related to the compression modulus KA,
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EA(A− Ao) =
1

2
KA

(A− Ao)2

Ao
(C.10)

=
1

2
KA

(∆A)2

Ao
(C.11)

where Ao is the reference area. With the standard assumption of constant volume,

DcAo ≡ Vc, where Dc is the hydrocarbon thickness and Vc is the hydrocarbon volume,

the change in area ∆A is rewritten in terms of a change in thickness ∆D,

(Dc + ∆D)(Ao −∆A) ≈ DcAo + ∆DAo −Dc∆A (C.12)

= Vc = DcAo (C.13)

⇒ ∆DAo = Dc∆A (C.14)

→ ∆A = Ao
∆D

Dc

, (C.15)

Substituting ∆A Eq. (C.15) into EA Eq. (C.11), the compression energy is expressed

in terms of a change in thickness

EA(∆D) =
1

2
KAAo

(
∆D

Dc

)2

. (C.16)

For KA = 2.75× 10−21 J/Å2, Ao = 2000 Å2, and EA = kBT/2, ∆D/Dc = 0.028.

C.1.1 Removing Fluctuations

The data from simulation, ρ∗sim(z), have already been ensemble averaged. Preferably,〈
|F0(r, qz)|2

〉
and

∣∣∣〈F0(r, qz)〉2
∣∣∣ would be calculated from ρsim(r, z). While the in-plane

dependence can not be easily recovered, the states of the ensemble can be determined

given a model for the fluctuations,

ρ∗sim(z) = 〈ρsim(z,∆D, . . .)〉∆D,... (C.17)

where {∆D, . . .} is the set of fluctuation parameters. In general ρsim(z,∆D . . .) is not
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unique. The possible ρsim(z,∆D . . .) were constrained by requiring ρsim(z,∆D . . .) to

be of the form

ρsim(z,∆D, . . .) =
∑
n

An cos

[
2πn

D
f(z,∆D, . . .)

]
, (C.18)

where f(z,∆D, . . . ) depends on the fluctuation model. ρsim(z,∆D, . . .) was deter-

mined by substituting Eq. (C.18) into Eq. (C.17) and performing a nonlinear fit with

fitting parameters {D,A1, . . . , An}.

C.1.2 Bilayer Model

Uniform extension and compression of the entire bilayer (B) is considered in this

Subsection. Using EA Eq. (C.16) and ρ∗sim Eq. (C.17), ρsim(z) was determined. Both

ρ∗sim(z) and ρsim(z) are plotted in Fig. C.1. Using ρsim(z,∆D),

ρsim(z,∆D) = ρsim

[(
1− ∆D

Dc

)
z

]
, (C.19)

〈|F |2〉 Eq. (C.6) and | 〈F 〉 |2 (C.8) are expressed as

〈∣∣FB(qz)
∣∣2〉 ≡ 1

ZB

∫ ∞
−∞

d(∆D) e−βEA(∆D)

∣∣∣∣∣
∫ D/2

−D/2
dz ρsim(z,∆D)eiqzz

∣∣∣∣∣
2

(C.20)

and

∣∣〈FB(qz)
〉∣∣2 ≡ ∣∣∣∣∣ 1

ZB

∫ ∞
−∞

d(∆D) e−βEA(∆D)

∫ D/2

−D/2
dz ρsim(z,∆D)eiqzz

∣∣∣∣∣
2

(C.21)

where β = (kBT )−1 and ZB is the partition function,
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Figure C.1: The EDP from simulation ρ∗sim(z) is plotted along with the corresponding
EDP with fluctuations removed ρsim(z) as functions of the distance z from the bilayer
midplane.

ZB ≡
∫ ∞
−∞

d(∆D) e−βEA(∆D) (C.22)

=

√
2πD2

c

KAAoβ
. (C.23)

〈∣∣FB
∣∣2〉 Eq. (C.20),

∣∣〈FB
〉∣∣2 Eq. (C.21), and their difference FB

∆ are plotted in

Fig. C.2. Since ρsim(z) is an even function, ρsim(z,∆D) is also an even function,

and therefore,
〈∣∣FB

∣∣2〉 is similar to
∣∣〈FB

〉∣∣2 except that it is broadened in the qz-

direction. Consequently, FB
∆ is large where

d

dqz

∣∣〈FB
〉∣∣2 (C.24)

is large. FB
∆ tends to be most (least) significant near the minima (maxima) of

∣∣〈FB
〉∣∣2.
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Figure C.2:
〈∣∣FB

∣∣2〉 Eq. (C.20),
∣∣〈FB

〉∣∣2 Eq. (C.21), and their difference FB
∆ are

plotted as functions of qz. In the right panel, the vertical axis is expanded to highlight
FB

∆ . The arbitrary scale of the vertical axis is the same in the left and right panels.

C.1.3 Leaflets Model

In the leaflets model, the two bilayer leaflets are allowed to fluctuate independently.

The leaflet compression modulus kA and elastic thickness dc are half of the corre-

sponding bilayer values, kA ≡ KA/2 and dc ≡ Dc/2. The compression energy for a

leaflet (L) straightforwardly follows from the bilayer model EA (C.16),

EL
A =

1

2
kAA0

(
∆D

dc

)2

(C.25)

= KAA0

(
∆D

Dc

)2

= 2EA. (C.26)

Using EL
A Eq. (C.26), ρ∗sim Eq. (C.17), and Eq. (C.27), ρsim(z) is determined. ρ∗sim(z)

and ρsim(z) are plotted in Fig. C.3. Using ρsim(z,∆D,∆D′),

ρsim(z,∆D,∆D′) =

ρsim

[(
1− ∆D

dc

)
z
]

z ≤ 0

ρsim

[(
1− ∆D′

dc

)
z
]

z > 0.
(C.27)

〈|F |2〉 Eq. (C.6) and | 〈F 〉 |2 Eq. (C.8) are expressed as
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Figure C.3: The EDP from simulation ρ∗sim(z) is plotted along with the corresponding
EDP with fluctuations removed ρsim(z). The resulting EDP is nearly identical to the
EDP plotted in Fig. C.1.

〈∣∣F L(qz)
∣∣2〉

≡ 1

ZL

∫ ∞
−∞

∫ ∞
−∞

d(∆D)d(∆D′) e−2β[EA(∆D)+EA(∆D′)]

∣∣∣∣∣
∫ D/2

−D/2
dz ρ (z,∆D,∆D′) eiqzz

∣∣∣∣∣
2

,

(C.28)

and

∣∣〈F L(qz)
〉∣∣2

≡

∣∣∣∣∣ 1

ZL

∫ ∞
−∞

∫ ∞
−∞

d(∆D)d(∆D′) e−2β[EA(∆D)+EA(∆D′)]

∫ D/2

−D/2
dz ρ (z,∆D,∆D′) eiqzz

∣∣∣∣∣
2

,

(C.29)

where ZL is the partition function,
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ZL ≡
∫ ∞
−∞

∫ ∞
−∞

d(∆D)d(∆D′) e−β[EA(∆D)+EA(∆D′)] (C.30)

=
πD2

c

KAAoβ
. (C.31)

〈∣∣F L
∣∣2〉 Eq. (C.28),

∣∣〈F L(qz)
〉∣∣2 Eq. (C.29), and their difference F L

∆ are plotted in

Fig. C.4.

Unlike the case of symmetric bilayer fluctuations in Section C.1.2, see the right

panel of Fig. C.2, F L
∆ has a single maximum and is significant at maxima of

∣∣〈F L(qz)
〉∣∣2.

For individual leaflet fluctuations, ρsim(z,∆D,∆D′) is not in general an even function

of z; both symmetric and asymmetric ρsim(z,∆D,∆D′) with respect to z = 0 con-

tribute to
〈∣∣F L

∣∣2〉. Therefore,
〈∣∣F L

∣∣2〉 is composed of the fluctuations that result

in
〈∣∣FB

∣∣2〉 in addition to asymmetric ρsim(z,∆D,∆D′) states. Consequently, F L
∆ to

an extent is an envelope for FB
∆ . It is plausible that a bilayer experiences both sym-

metric and asymmetric thickness fluctuations, and therefore, F L
∆ is considered more

realistic than FB
∆ . Importantly, F L

∆(qz) is consistent with the use of a small, smooth

background that is commonly drawn in this lab to give zeroes in |〈F (qz)〉|2.
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Figure C.4:
〈∣∣F L

∣∣2〉 Eq. (C.28),
∣∣〈F L

〉∣∣2 Eq. (C.29), and their difference F L
∆ are

plotted. In the right panel, the vertical axis is expanded as compared to the left
panel to highlight F L

∆. The arbitrary scale of the vertical axis is the same in the left
and right panels and the same as used in Fig. C.2.
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C.2 Undulation Correction

The undulation correction (UC) is a rescaling of the electron density profile normal

to the bilayer plane, see Eq. (7.21). The influence of ΨUC on the electron density

(or form factor) must be considered to compare various experimental, simulated, and

theoretical results. The UC is akin to a normalization. As a common example, con-

sider both an experiment and a simulation studying a single lipid bilayer. Because

of computational limitations, the simulated membrane has a much smaller area than

the experimental system, and that reduces the fluctuations compared to the exper-

imental system. Indeed, only for simulations of very large area membranes is UC

required [105]. Without employing a UC, the electron densities (or form factors)

of the experimental and simulated systems may differ because of the difference in

their allowed fluctuation modes. A similar argument could be made with regard to

experimental results from unilamellar vesicles and oriented multilamellar arrays.

Utilizing a calculation completed by N. Lei [56, 106] and F. Auguste et al. [107], a

correction for the fluctuating local bilayer normal ∇z+
j was previously suggested [39].

However, only the connection between the aforementioned fluctuations and the results

for lipid area were made [48], although the connection to modifications of the form

factor have been used routinely in this lab [85]. Section 7.5 clarifies the extent to

which a UC affects the measured scattering. Below, a tilt-dependent UC will be

derived with discussion relating to the tilt-independent UC. In Appendix A.2.1 Ψ0

was decomposed in terms of more convenient fluctuation fields. Using Ψ0 Eq. (A.21)

and the definition of ΨUC Eq. (7.19),

ΨUC ≈ 1 +
1

2

(〈∣∣∇z+
0

∣∣2〉+
〈∣∣∇z−0

∣∣2〉− 〈|m̂0|2
〉
−
〈
|m̄0|2

〉)
(C.32)

≡ 1 +
1

2

4∑
i=1

Ψ
(i)
UC. (C.33)

Note, z−0 (r) and m̄0(r) are fields involved in the peristaltic part of the complete

Watson et al. model [1]. Anticipating later results, ΨUC is derived only considering〈∣∣∇z+
0

∣∣2〉 in Section C.2.1. In Section C.2.2, it is shown that 〈|m̂0|2〉,
〈∣∣∇z−0

∣∣〉, and

〈|m̄0|2〉 are approximately system size independent. When comparing two systems

with radii greater than ∼220 Å,
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Ψ
(2−4)
UC ≡

4∑
i=2

Ψ
(i)
UC (C.34)

is the same for both systems. Therefore, after correcting each system using the

appropriate
〈∣∣∇z+

0

∣∣2〉, the remaining short length scale fluctuations of the systems

are consistent. This is an important point since Ψ
(2−4)
UC depends on many moduli

that are currently unassessable by experiments. Previewing the main conclusions of

Sections C.2.1 through C.2.2, the values of ΨUC are listed in Table C.1 using parameter

values listed in Table C.2.

Table C.1: Contributions to ΨUC and ΨUC using values from Table C.2.

value (Eq. #)

Watson† Tilt‡ ���Tilt‡〈∣∣∇z+
0

∣∣2〉 0.022 (C.40) 0.030 (C.46) 0.019 (C.46)〈
|m̂0|2

〉
0.019 (C.66)〈∣∣∇z−0

∣∣2〉 0.007 (C.71)〈
|m̄0|2

〉
0.015 (C.72)

ΨUC 0.998 (C.33) 1.015 (C.48) 1.010 (C.48)

† using parameter values from [1], B, and a; see Table C.2

‡ using parameter values from Section 7.1; see Table C.2

jnagle
Sticky Note
These two m terms should not be included in the UC correction as noted on page 30, so the Watson column should be ignored.

jnagle
Sticky Note
Marked set by jnagle
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Table C.2: Parameter values from [1] and Section 7.1.

parameter [units] value description

[1
]†

b0 [nm] 1.8 average monolayer thickness

κθ [J/nm2] 5.4×10−20 tilt modulus

kbc [J] 7.7×10−20 bending modulus at constant chain length

kA [J/nm2] 2.6×10−19 compressibility modulus

Ω [J/nm] 1×10−19 cross-term modulus

κtw [J] 7.7×10−21 twist modulus

kc [J] 6.7×10−20 bending modulus at neutral surface

S
ec

.
7.

1

Kc [J] 8.5×10−20 bilayer bending modulus

B [J/nm4] 7×10−23 bilayer bulk modulus

Kθ [J/nm2] 10.7×10−20 bilayer tilt modulus

a [nm] 1.7 short in-plane length scale cutoff

† reported monolayer values for DPPC from MD simulation using MARTINI
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C.2.1 ΨUC Evaluated

For comparison of sufficiently large systems, see Section C.2.2,

ΨUC ≈ 1 +

〈∣∣∇z+
0

∣∣2〉
2

. (C.35)〈∣∣∇z+
0

∣∣2〉 is proportional to a sum over all allowed Fourier modes weighted by the

appropriate spectrum. Using the definition of a Fourier transform Eq. (3.41),

〈∣∣∇z+
0 (r)

∣∣2〉 =

〈∣∣∣∣∣ 1√
ApJ

∑
Q

iQrz
+
Qe

iQr·r

∣∣∣∣∣
2〉

(C.36)

=
1

ApJ

∑
Q

∑
Q′

QrQ
′
r

〈∣∣z+
Q

∣∣2〉 ei(Qr+Q′r)·r. (C.37)

Substituting
〈∣∣z+

Q

∣∣2〉 Eq. (3.57) into Eq. (C.37),

〈∣∣∇z+
0

∣∣2〉 =
kBT

4BApJ

∑
Q

Q2
r

1

ℵ2 + sin2(QzD/2)
. (C.38)

Following methods similar to Section 3.3.3,
〈∣∣∇z+

0

∣∣2〉 Eq. (C.38) is further rewritten,

〈∣∣∇z+
0

∣∣2〉 =
kBT

2πBξ2

∫ π/a

π/ã

dQr
Qr (1 + ξ2

θQ
2
r)√

4 + 4ξ2
θQ

2
r + ξ4Q4

r

(C.39)

=
kBT

4πKc

(1− 2
ξ4
θ

ξ4

)
ln
(
v +
√

1 + v2
)∣∣∣∣β

α

+ 2
ξ2
θ

ξ2

√
1− ξ4

θ

ξ4

√
1 + v2

∣∣∣∣∣∣
β

α


(C.40)

where π/ã is the short wavevector cutoff,

α =

(
ξπ
ã

)2
+ 2

ξ2
θ

ξ2

2
√

1− ξ4
θ

ξ4

, (C.41)
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and

β =

(
ξπ
a

)2
+ 2

ξ2
θ

ξ2

2
√

1− ξ4
θ

ξ4

. (C.42)

Since the tilt-associated length scale ξθ =
√
Kc/Kθ (typically ∼10 Å) is less than

ξ = 4
√
Kc/B (typically 40 - 60 Å),

α→ 1

2

(
πξ

ã

)2

≡ τ̃ (C.43)

β → 1

2

(
πξ

a

)2

≡ τ. (C.44)

Since ξ > a and assuming ξ � ã which is related to the system size, τ � 1 � τ̃ .

Consequently,
〈∣∣∇z+

0

∣∣2〉 Eq. (C.40) is significantly simplified

〈∣∣∇z+
0

∣∣2〉 ≈ kBT

4πKc

(
ln
(
v +
√

1 + v2
)∣∣∣τ

0
+ 2

ξ2
θ

ξ2

√
1 + v2

∣∣∣∣τ
0

)
(C.45)

=
kBT

4πKc

(
2 ln

(
πξ

a

)
+

(
πξθ
a

)2
)
. (C.46)

Substituting
〈∣∣∇z+

0

∣∣2〉 Eq. (C.46) into ΨUC Eq. (C.35), the tilt-dependent UC is

ΨUC ≈ 1 +
kBT

4πKc

(
ln

(
πξ

a

)
+

1

2

(
πξθ
a

)2
)

(C.47)

= Ψ��tilt
UC +

kBT

8πKc

(
πξθ
a

)2

, (C.48)

where Ψ��tilt
UC is the UC without considering tilt. Using the fitted parameter values from

Section 7.1 (a = 17 Å, ξ = 59 Å, ξθ = 8.9 Å, and Kc/(kBT ) ≈ 20; see Table C.2),

ΨUC Eq. (C.48) is approximately 1.015 and 1.01 with and without tilt, respectively.

Including the tilt degree of freedom increases the height spectrum at larger Qr as

compared to the tilt-independent model. Therefore as expected, the average angle
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between ẑ and the local bilayer normal is larger in the tilt-dependent model.

C.2.2 Averages of Quantities Dominated by Short Length

Scales

In Section C.2, the undulation correction ΨUC was shown to depend on
〈∣∣∇z+

0

∣∣2〉,

〈|m̂0|2〉,
〈∣∣∇z−0

∣∣2〉, and 〈|m̄0|2〉. However, the latter three thermal averages were

neglected in Section C.2.1. 〈|m̂0|2〉,
〈∣∣∇z−0

∣∣2〉, and 〈|m̄0|2〉 are derived, and it is

argued that these averages are dominated by short length scale fluctuations. When

comparing two systems with sufficiently large areas, Ψ
(2−4)
UC Eq. (C.34) is the same for

both systems, and therefore, it is unnecessary to include Ψ
(2−4)
UC in ΨUC.

To calculate the ensemble averages 〈|m̂0|2〉,
〈∣∣∇z−0

∣∣2〉, and 〈|m̄0|2〉, the complete

Watson et al. model [1] is required. The Watson model is extended to describe bilayer

stacks by adding the bilayer interaction term

B

2

[
z+
j+1(r)− z+

j (r)
]2
, (C.49)

and rewriting the fields as functions of the stacked bilayer index j. Following Watson

et al. [1], the microscopic surface tension is neglected (γλ = 0), see Section IIIB [1].

Additionally, protrusion fluctuations are also neglected because they are not coupled

to either the bending or peristaltic modes for vanishing microscopic surface tension.

The resulting free energy functional is expressed in Fourier space as a sum of undu-

lation (u) and peristaltic (p) contributions

F̃u ≡
∑
Q

f̃u(−Q)A f̃Tu (Q) (C.50)

and

F̃p ≡
∑
Qr

f̃p(−Qr)B f̃Tp (Qr), (C.51)

respectively, where
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f̃u(Q) ≡ (z+
Q, m̂

‖
Q, m̂

⊥
Q, εQ), (C.52)

f̃p(Qr) ≡ (z−Qr
, m̄

‖
Qr
, m̄⊥Qr

), (C.53)

A ≡



kbcQ
4
r + 2B sin2(QzD/2) −ikbcQ3

r 0 Q2
rΩ/(2b0)

ikbcQ
3
r κθ + kbcQ

2
r 0 iQrΩ/(2b0)

0 0 κθ + κtwQ
2
r 0

Q2
rΩ/(2b0) −iQrΩ/(2b0) 0 kA/b

2
0


, (C.54)

and

B ≡


kA
b20
− Q2

rΩ
b0

+ kbcQ
4
r

iQrΩ
2b0
− ikbcQ3

r 0

− iQrΩ
2b0

+ ikbcQ
3
r κθ + kbcQ

2
r 0

0 0 κθ + κtwQ
2
r

 . (C.55)

The peristaltic contribution F̃p Eq. (C.51) is only a function of Qr = (Qx, Qy) because

peristaltic fluctuations of different bilayers are not coupled by the bilayer interation

term in Eq. (C.49). Intuitively, fully hydrated bilayers in a stack are far enough apart

that peristaltic modes in different bilayers are unlikely to be significantly correlated.

First, 〈|m̂0|2〉,
〈∣∣∇z−0

∣∣2〉, and 〈|m̄0|2〉 are derived, and then, it is shown that 〈|m̂0|2〉,〈∣∣∇z−0
∣∣2〉, and 〈|m̄0|2〉 are primarily determined by short length scale fluctuations.

Deriving
〈
|m̂0|2

〉
Using the definition of a Fourier transform Eq. (3.41),

〈
|m̂0|2

〉
=

1

ApJ

∑
Q,Q′

[〈∣∣m̂⊥Q∣∣2〉+

〈∣∣∣m̂‖Q∣∣∣2〉] ei(Qr+Q′r)·r. (C.56)
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The thermal averages in Eq. (C.56) are evaluated using A Eq. (C.54) and the relation

between a Hermitian matrix and a thermal average, see Appendix A.1. Note, F̃u

Eq. (C.54) and F̃p Eq. (C.55) do not have a multiplicative 1/2 prefactor, and therefore,

〈
|f̃(Q)〉〈f̃(Q′)|

〉
th

=
kBT

2
H−1 δQ,−Q′ , (C.57)

where H is a Hermitian matrix. Simplifying the thermal average dependent part of

Eq. (C.56),

〈∣∣m̂⊥Q∣∣2〉+

〈∣∣∣m̂‖Q∣∣∣2〉
=
kBT

2

(
A−1

3,3 + A−1
2,2

)
δQ,−Q′ (C.58)

=
kBT

2

(
1

κθ + κtwQ2
r

+
kcQ

4
r + 2B sin2(QzD/2)

κθ
[
kcQ4

r + 2B sin2(QzD/2)
]) δQ,−Q′ (C.59)

=
kBT

2κθ(1 + ξ̃2
twQ

2
r)

1 +

[
ξ̃4Q4

r + 2 sin2(QzD/2)
]

(1 + ξ̃2
twQ

2
r)

ξ̃4Q4
r + 2 sin2(QzD/2)(1 + ξ̃2

θQ
2
r)

 δQ,−Q′ , (C.60)

where

kc ≡ kbc −
Ω2

4kA
, (C.61)

ξ̃4 ≡ kc/B, (C.62)

ξ̃2
θ ≡ kc/κθ, (C.63)

and

ξ̃2
tw ≡ κtw/κθ. (C.64)

Substituting Eq. (C.60) into
〈
|m̂0|2

〉
Eq. (C.56) and following methods similar to

Section 3.3.3,
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∑
Q

→ ApJ

(2π)3

∫ π/a

π/ã

dQrQr

∫ 2π

0

dθ

∫ π

−π
dω, (C.65)

〈
|m̂0|2

〉
≈ kBT

8π2κθ

∫ π/a

π/ã

dQr
Qr

1 + ξ̃2
twQ

2
r

∫ π

−π
dω

1 +

[
ξ̃4Q4

r + 2 sin2(ω/2)
]

(1 + ξ̃2
twQ

2
r)

ξ̃4Q4
r + 2 sin2(ω/2)(1 + ξ̃2

θQ
2
r)

 .

(C.66)

Deriving
〈∣∣∇z−0

∣∣2〉
Using the definition of a Fourier transform Eq. (3.41), and B Eq. (C.55),

〈∣∣∇z−0 (r)
∣∣2〉 =

〈∣∣∣∣∣ 1√
Ap

∑
Qr

iQrz
−
Qr
eiQr·r

∣∣∣∣∣
2〉

(C.67)

=
1

Ap

∑
Qr,Q′r

−QrQ
′
r

〈∣∣z−Qr

∣∣2〉 ei(Qr+Q′r)·r

=
kBT

2Ap

∑
Qr,Q′r

−QrQ
′
r B−1

1,1 e
i(Qr+Q′r)·r δQr,−Q′r

=
kBT

2Ap

∑
Qr

Q2
r B−1

1,1, (C.68)

where

B−1
1,1(Qr) =

kbcQ
2
r + κθ

kbcκθQ
4
r +Q2

r

(
kAkbc
b20
− κθΩ

b0
− Ω2

4b20

)
+ kAκθ

b20

. (C.69)

Following a similar methodology to Section 3.3.3,
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∑
Qr

→ Ap

(2π)2

∫ π/a

π/ã

dQr Qr

∫ 2π

0

dθ, (C.70)

and
〈∣∣∇z−0

∣∣2〉 Eq. (C.68) is further rewritten,

〈∣∣∇z−0
∣∣2〉 ≈ kBT

4π

∫ π/a

π/ã

dQr Q
3
r B−1

1,1(Qr). (C.71)

Deriving 〈|m̄0|2〉

Using the definition of a Fourier transform Eq. (3.41) and B Eq. (C.55),

〈
|m̄0|2

〉
=

1

Ap

∑
Q,Q′

[〈
|m̄‖Q|

2
〉

+
〈∣∣m̄⊥Q∣∣2〉] ei(Qr+Q′r)·r

≈ kBT

4π

∫ π/a

π/ã

dQr Qr

(
B−1

2,2 + B−1
3,3

)
, (C.72)

where

B−1
2,2(Qr) =

kbcQ
4
r −

ΩQ2
r

b0
+ kA

b20

kbcκθQ
4
r +Q2

r

(
kAkbc
b20
− κθΩ

b0
− Ω2

4b20

)
+ kAκθ

b20

(C.73)

B−1
3,3(Qr) =

1

κθ + κtwQ2
r

. (C.74)

System Size Dependence

The critical issue for comparing systems of different lateral size is the extent to which〈∣∣∇z+
0

∣∣〉, 〈|m̂0|2〉,
〈∣∣∇z−0

∣∣〉, and 〈|m̄0|2〉 are sensitive to long length scale fluctu-

ations. Therefore, the ã-dependence (ã is the long length scale cutoff) of Ψ
(i)
UC –

Eqs. (C.40), (C.66), (C.71), and (C.72), respectively – are investigated numerically,

∆Ψ
(i)
UC(ã) ≡ 1− Ψ

(i)
UC(ã)

Ψ
(i)
UC(ã =∞)

. (C.75)
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If Ψ
(i)
UC is dominated by short length scale fluctuations, then it is expected that Ψ

(i)
UC(ã)

decays rapidly for increasing ã. Since some of the Ψ
(i)
UC depend on parameter values

not yet experimentally assessable, parameter values from MD simulations are used [1],

see Table C.2. ∆Ψ
(i)
UC Eq. (C.75) are plotted in Fig. C.5.

〈∣∣∇z+
0

∣∣〉 decays slowest and

therefore is most system size dependent. For a system with radius ∼ 200 Å, the

other three averages are within 1% of their value for an infinite system. Therefore,

it will often be unnecessary to include their contributions to ΨUC because most ex-

perimental and simulated systems have radii greater than 200 Å. To compare most

experimental and simulated systems, the UC derived in Section C.2.1 which only

considers
〈∣∣∇z+

0

∣∣2〉 is sufficient.

Moreover, 〈|m̂0|2〉,
〈∣∣∇z−0

∣∣〉, and 〈|m̄0|2〉 depend on moduli values that are not

currently determinable by experiment (Ω, κtw, and kbc; see Table C.2 for definitions).

Therefore, the aforementioned averages can only be evaluated using moduli values

determined from simulations. Using values in Table C.2, the contributions from all

four averages for ã =∞ are summarized in Table C.1. Using the values in Table C.1

and Eq. (C.33), ΨUC ≈ 0.998.



Appendix C. Form Factor Details 220

5 10 15 20 25

10
-5

10
-4

10
-3

10
-2

10
-1

10
0
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Figure C.5:
〈∣∣∇z+

0

∣∣〉, 〈|m̂0|2〉,
〈∣∣∇z−0

∣∣〉, and 〈|m̄0|2〉 – Eqs. (C.40), (C.66), (C.71),
and (C.72), respectively – are plotted as functions of ã. The relevant material pa-
rameter values are summarized in Table C.2. The curves are normalized at ã = 2
nm.



Appendix D

Miscellaneous

D.1 a-Dependence of Structure Factor

In Section 6.1.4, it was established that varying the value of a only affects SF
CCD,1(qx, qz)

at greater qx-values (qx & π/a). Fixing Kc, Kθ, and B, the structure factor as a func-

tion of a is explored. Restating SSD Eq. (5.9), the structure factor for a single domain

is expressed as

SSD(qr, qz; τ
′) = πL2

r

J−1∑′

j=0

(J − j) cos(qzjD)

∫ Lr

0

dr rFr

(
r

Lr

)
J0(qrr)G(r, j, qz; τ

′),

(D.1)

where the τ ′-dependence in

G(r, j, qz; τ
′) = exp

{
−q

2
z

2
hj (r/ξ, `, τ ′)

}
(D.2)

has been stressed. As discussed in Section 4.1, changing the height-height function’s

upper integration limit approximately adds a constant to the height-height function,

see Eq. (4.9),

hj(ρ, `, τ
′) ≈ hj(ρ, `, τ) +

D2η

2π2
C†(τ, τ ′, `), (D.3)

where

221
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τ =
1

2

(
πξ

a

)2

. (D.4)

Therefore, in the present context, τ ′ and τ only differ because of different a values.

Substituting hj(ρ, `, τ
′) Eq. (D.3) into SSD Eq. (D.1),

SSD(qr, qz; τ
′)

= πL2
r

J−1∑′

j=0

(J − j) cos(qzjD)

∫ Lr

0

dr rFr

(
r

Lr

)
J0(qrr)e

− q
2
z
2
hj(ρ,`,τ

′) (D.5)

≈ e−
q2z
2
D2η

2π2 C
†(τ,τ ′,`)

[
πL2

r

J−1∑′

j=0

(J − j) cos(qzjD)

∫ Lr

0

dr rFr

(
r

Lr

)
J0(qrr)e

− q
2
z
2
hj(ρ,`,τ)

]

= e−
q2z
2
D2η

2π2 C
†(τ,τ ′,`)SSD(qr, qz; τ). (D.6)

Eq. (D.6) suggests that structure factors with different values of τ and τ ′ because

of different values of a have significant differences as a function of qz due to the

qz-dependent multiplicative prefactor. Note, Eq. (D.3) is reasonable for j > 1 and

ρ > 20, and therefore, it is expected that Eq. (D.6) is an increasingly poor approx-

imation for increasing qr. In Section 6.1.4, the a-dependence of SCCD is presented,

and Eq. (D.6) is shown to be reasonable.

The effect of a on the structure factor was demonstrated using SSD Eq. (D.1).

The various sample and experimental concerns relating SSD and SF
CCD,1 discussed in

Sections 5.2 and 5.3 only slightly influence the prefactor 30

exp

{
−q

2
z

2

D2η

2π2
C†(τ, τ ′, `)

}
. (D.7)

If only an upper bound on the value of a is assessable, the presented a-dependence

of the structure factor is particularly important in estimating the uncertainty of the

determined |F (qz)|2 as discussed in Section 6.1.4 and shown in Fig. 6.12.

30The most significant modification to Eq. (D.7) is due to the geometric broadening in the pz-
direction.
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D.2 Computational Precision of SF
CCD,1

At the end of Section 5.4, Eqs. (5.145)-(5.148) describe a methodology for calculating

the predicted scattering intensity. The first two equations are reproduced below for

convenience,

f1(ρ, qz) ≡
∞∑′

j=0

Hz(jD, qz)√
1 + hjσ̃∗2z

exp

{
−q

2
zhj + j2D2σ̃∗2z
2 (1 + hjσ̃∗2z )

}
cos

(
qzjD

1 + hjσ̃∗2z

)
(D.8)

f2(qr, qz) ≡
∫ ∞

0

dr rHr(r)J0(qrr)f1(ρ, qz). (D.9)

Since the integrand of f2 is oscillatory about r = 0, the numerical evaluation of f2

requires the summation of many positive and negative terms of similar magnitude.

Even though f2 is theoretically positive definite, the numerical calculation of f2

is negative for some parameter values and (qr, qz). f2 < 0 is more common for larger

qr-values because J0(qrr) is increasingly oscillatory. The negative f2-values are the

result of f1 and Hr being tabled and interpolated to finite precision. If f1 and Hr

are more precisely calculated, the number of negative f2-values is diminished, but

the analysis program runs much more slowly. f1 and Hr are calculated at sufficient

precision so that the instances of f2 < 0 is typically of order 1 in 1000. When a

negative f2(q∗r , qz)-value is calculated, f2-values calculated at neighboring qr-values

are interpolated to determine a positive f2(q∗r , qz)-value.

D.3 Numerical Integration Issue

It was found that for ρ� 1 the GNU Scientific Library numerical integration returns

incorrect values for h0(ρ, `, τ) when compared to Mathematica. For ρ� 1, J0(
√

2vρ)

can be replaced by the first two terms in its Taylor series about ρ = 0, substantially

simplifying the integrand of Eq. (4.1) and leading to an analytic solution to the

integral. Beginning with Eq. (4.1) and replacing J0(
√

2vρ) with its truncated Taylor

series,
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h0(ρ, `, τ) =
D2η

2π2

∫ τ

0

dv
1− J0

(√
2vρ
)

v√
1+v`

√
1 + v2

1+v`

(D.10)

≈ D2η

2π2

∫ τ

0

dv
1−

(
1− vρ2

2

)
v√

1+v`

√
1 + v2

1+v`

(D.11)

⇒ ha
0(ρ, `, τ) ≡ D2ρ2η

4π2

[
` (fc(τ)− 1)−

(
`2 − 2

2

)
ln

(
2τ + `+ 2fc(τ)

`+ 2

)]
, (D.12)

where τ = 1
2

(
πξ
a

)2
and fc(x) =

√
1 + x`+ x2. The difference between the exact

Eq. (D.10) and approximate Eq. (D.12) forms is quantified by

∆ha
0(ρ, `, τ) ≡

∣∣∣∣1− ha
0(ρ, `, τ)

h0(ρ, `, τ)

∣∣∣∣ . (D.13)

In Fig. D.1, Eq. (D.13) is plotted as a function of ρ for ` = 2 and ` = 0. For ρ < 0.005,

3.5 × 10−5 . ha
0(ρ, `, τ) . 8 × 10−5, and therefore, Eq. (D.12) is used to calculate

hj(ρ, `, τ) for ρ < 0.005 and j = 0.
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Figure D.1: The relative error of approximating the Bessel function with the first 2
terms in its Taylor series about 0 as a function of ρ for ` = 2 (black solid line) and
` = 0 (red dashed line). The solid and dashed lines are upper and lower bounds,
respectively, for the relative error. A typical value of τ = 50 was used.
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D.4 Deriving Tilt-Dependent Fluctuation Free En-

ergy: ∆Ffl

In Section 8.2.2, the tilt-dependent fluctuation free energy per unit area of one bilayer

∆F̃fl is used to determine the Hamaker parameter H of a stack of DOPC bilayers.

Below, ∆F̃fl is derived.

The bilayer stack undulation free energy Fu Eq. (3.51) is treated as a Hamiltonian,

Hu ≡ Fu =
1

2

∑
Q

fu(−Q)U fTu (Q), (D.14)

where

fu(Q) =
(
z+
Q, m̂

‖
Q, m̂

⊥
Q

)
, (D.15)

and

U =


KcQ

4
r + 4B sin2(QzD/2) −iKcQ

3
r 0

iKcQ
3
r KcQ

2
r +Kθ 0

0 0 Kθ

 . (D.16)

Ffl is related to the partition function Zfl,

Ffl ≡ −
1

β
lnZfl, (D.17)

and therefore, the partition function is derived,

Zfl ≡
∫

d [fu(Q)] exp {−βHu} . (D.18)

Substituting Hu Eq. (D.14) into Zfl Eq. (D.18),
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Zfl =
∏
Q

∫
d [fu(Q)] exp

{
−β

2
fu(−Q)U fTu (Q)

}
(D.19)

=
∏
Q

(
βdet [U]

2π

)−1/2

. (D.20)

Ffl Eq. (D.17) is evaluated using Zfl Eq. (D.20),

Ffl =
1

2β

∑
Q

ln

(
βdet [U]

2π

)
(D.21)

=
∑
Qz

Ffl(Qz), (D.22)

where

Ffl(Qz) ≡
kBT

2

Ap

(2π)2

∫
d2Qr ln

(
βdet [U]

2π

)
. (D.23)

The free energy of interest is the difference from a reference state with B = 0,

∆Ffl = Ffl(B 6= 0)−Ffl(B = 0). (D.24)

Using

det [U] = K2
θ

[
KcQ

4
r + 4B(1 + ξ2

θQ
2
r) sin2

(
QzD

2

)]
, (D.25)

∆Ffl(Qz) is expressed as

∆Ffl(Qz) =
kBTAp

8π2

∫
d2Qr ln

(
1 +

4 sin2 (QzD/2)

ξ4Q4
r

(
1 + ξ2

θQ
2
r

))
(D.26)

=
kBTAp

4π

∫ π/a

0

dQr Qr ln

(
1 +

4 sin2 (QzD/2)

ξ4Q4
r

(
1 + ξ2

θQ
2
r

))
. (D.27)



Appendix D. Miscellaneous 227

For ξθ → 0 ∆Ffl(Qz) Eq. (D.27) reduces to the tilt-independent result; the tilt-

dependence is significant for Qr & 1/ξθ (for reasonable estimates of ξθ ≈ 9 Å and

a ≈ 16 Å, 1/ξθ < π/a). Finally, using ∆Ffl(Qz) Eq. (D.27) and Eq. (D.22), the

fluctuation free energy per unit area of one bilayer is

∆F̃fl ≡
∆Ffl

JAp

(D.28)

=
kBTD

8π2

∫ π/D

−π/D
dQz

∫ π/a

0

dQr Qr ln

(
1 +

4 sin2 (QzD/2)

ξ4Q4
r

(
1 + ξ2

θQ
2
r

))
.

(D.29)

In the limit ξθ → 0 and a→∞,

lim
ξθ→0
a→∞

∆F̃fl ≡ ∆F̃��tiltfl (D.30)

=
kBTD

8π2

∫ π/D

−π/D
dQz

∫ ∞
0

dQr Qr ln

(
1 +

4 sin2 (QzD/2)

ξ4Q4
r

)
(D.31)

=
kBTD

8πξ2

∫ π/D

−π/D
dQz |sin(QzD/2)| (D.32)

=
kBT

2π

√
B

Kc

. (D.33)

where ∆F̃��tiltfl is the tilt-independent fluctuation free energy per unit area of one bilayer

and was previously derived [58].



Appendix E

Vesicle Undulation Correction

Another method to measure the form factor |F | uses scattering from so-called large

unilamellar vesicles (ULVs) [85]. That method does not determine values of the me-

chanical moduli which is the primary focus of this thesis. In the past an undulation

correction (UC), see Section C.2, has not been applied to |F | determined using scatter-

ing from ULV. Previous researchers argued that a UC was unneccessary because “long

wavelength undulations are suppressed by the vesicle size” [85]. Certainly, a vesicle’s

size limits the longest possible undulation wavelength, but for a quasi-spherical vesicle,

undulations with wavelengths shorter than the vesicle’s circumference are permitted.

In principal, to compare ULV |F | and |F | determined using oriented stacked bilayers

or |F | determined from simulations, the ULV |F | should be undulation corrected.

In Sections E.1 and E.2, a UC is derived for spherical and planar geometries, re-

spectively. The spherical geometry is more appropriate for the description of vesicles,

but the planar geometry is simpler and is used for comparison, see Section E.3. It

is shown that the vesicle UC tends to be smaller than the planar membrane UC, see

Fig. E.1, because of differences in their respective height spectra, see Fig. E.2. Addi-

tionally, the vesicle UC is reduced by finite effective surface tension (σ̄), see Fig. E.3.

For 250 Å radius ULV and a = 17 Å, the vesicle UC is calculated to be less than

1.005, significantly less than the typical UC for oriented bilayer stacks, see Table C.1

(specifically the “Tilt” and “���Tilt” columns).

228
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E.1 Spherical Geometry

The vesicle height fluctuation spectrum was first derived by Milner and Safran [108].

Since it is convenient for later derivations, the notation of Barbetta et al. [109] is

followed. The quasi-spherical vesicle’s shape is parameterized in spherical coordinates

r = R[1 + u(θ, φ)]r̂, (E.1)

where u(θ, φ)� 1 and descibes the vesicle’s deviations from a sphere with radius R.

The vesicle free energy will be described within the Helfrich model [10]

H =

∫
dS (2KcC

2 + σ), (E.2)

where S is the surface of the vesicle and C is the local mean curvature, essentially

∇2z+/2. In the context of describing a quasi-spherical vesicle, σ is an effective surface

tension since it was introduced as a Lagrange multiplier to approximately constrain

the vesicle’s surface area [108].

Decomposing u(θ, φ) into spherical harmonics Y m
` ,

u(θ, φ) =
u0,0√

4π
+
∑
ω

u`,mY
m
` (θ, φ), (E.3)

where

u`,−m = (−1)mu∗`,m (E.4)

and

∑
ω

≡
L∑
`=2

∑̀
m=−`

. (E.5)

L is a high wavevector cutoff. Note that the ` = 1 modes are discarded since they

correspond to translations. Barbetta et al. [109] expressed the vesicle height-height

fluctuation spectrum as
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〈u`,mu`′,m′〉 = (−1)m
kBT

H̃`

δ`,`′δm,−m′ (E.6)

where

H̃` ≡ Kc(`− 1)(`+ 2)(`2 + `+ σ̄) (E.7)

and

σ̄ ≡ σR2/Kc. (E.8)

The vesicle UC is proportional to
〈
|∇u(θ, φ)|2

〉
where ∇ only acts along θ̂ and φ̂,

〈
|∇u(θ, φ)|2

〉
=

〈∣∣∣∣∂u∂θ θ̂ +
1

sin θ

∂u

∂φ
φ̂

∣∣∣∣2
〉

(E.9)

=

〈∣∣∣∣∂u∂θ
∣∣∣∣2 +

1

sin2 θ

∣∣∣∣∂u∂φ
∣∣∣∣2
〉

=
〈
|uθ|2

〉
+

1

sin2 θ

〈
|uφ|2

〉
(E.10)

where ui = ∂u
∂i

. Relations for both
〈
|uθ|2

〉
and

〈
|uφ|2

〉
have been presented previ-

ously [109]. In the interest of completeness and to facilitate future tilt-dependent

extensions, derivations of
〈
|uθ|2

〉
and

〈
|uφ|2

〉
are given below.

E.1.1
〈
|uθ|2

〉
Using u(θ, φ) Eq. (E.3), 〈u`,mu`′,m′〉 Eq. (E.6), and (−1)mY −m` = (Y m

` )∗,
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〈
|uθ|2

〉
=
∑
ω,ω′

∂Y m
` (Ω)

∂θ

∂Y m′

`′ (Ω)

∂θ
〈u`,mu`′,m′〉 (E.11)

=
∑
ω,ω′

(−1)m
kBT

H̃`

∂Y m
`

∂θ

∂Y m′

`′

∂θ
δ`,`′δm,−m′

=
∑
ω

(−1)m
kBT

H̃`

∂Y m
`

∂θ

∂Y −m`

∂θ

=
L∑
`=2

kBT

H̃`

∑̀
m=−`

∂Y m
`

∂θ

∂(Y m
` )∗

∂θ
. (E.12)

The m-dependent part of
〈
|uθ|2

〉
in Eq. (E.12) is further simplified using the addition

theorem for spherical harmonics,

∑̀
m=−`

Y m
` (θ1, φ1)[Y m

` (θ2, φ2)]∗ =
2`+ 1

4π
P`[cos(γ)], (E.13)

where P` is the Legendre polynomial of order ` and

cos γ = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2). (E.14)

Setting φ1 = φ2 = φ in cos γ leads to cos γ = cos(θ1 − θ2), and differentiating both

sides of Eq. (E.13) with respect to θ1 and θ2,

∑̀
m=−`

∂θ1Y
m
` (θ1, φ)∂θ2 [Y m

` (θ2, φ)]∗ =
2`+ 1

4π
∂θ1∂θ2P`[cos(γ)] (E.15)

=
2`+ 1

4π

∂

∂θ1

(
∂(cos γ)

∂θ2

dP`(cos γ)

d(cos γ)

)
=

2`+ 1

4π

∂

∂θ1

(
sin γ

dP`(cos γ)

d(cos γ)

)
=

2`+ 1

4π

(
− sin2 γ

d2P`(cos γ)

d(cos γ)2
+ cos γ

dP`(cos γ)

d(cos γ)

)
,

(E.16)

where ∂i = ∂
∂i

. Using the Legendre differential equation,
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sin2 γ
d2P`(cos γ)

d(cos γ)2
= −`(`+ 1)P`(cos γ) + 2 cos γ

dP`(cos γ)

d(cos γ)
(E.17)

and setting θ1 = θ2 = θ, Eq. (E.16) is rewritten as

∑̀
m=−`

∂θY
m
` (θ, φ)∂θ[Y

m
` (θ, φ)]∗ =

2`+ 1

4π

(
`(`+ 1)P`(0)− cos(0)

dP`(cos γ)

d(cos γ)

∣∣∣∣
γ=0

)
(E.18)

=
2`+ 1

4π

(
`(`+ 1)− `(`+ 1)

2

)
=

(2`+ 1)

4π

`(`+ 1)

2
, (E.19)

where the Legendre polynomial property that a derivative evaluated at an end point

is P`(1) = `(`+1)
2

was used. Substituting Eq. (E.19) into
〈
|uθ|2

〉
Eq. (E.12) finishes

the derivation of
〈
|uθ|2

〉
,

〈
|uθ|2

〉
=
kBT

8π

L∑
`=2

`(`+ 1)(2`+ 1)

H̃`

. (E.20)

E.1.2
〈
|uφ|2

〉
Using u(θ, φ) Eq. (E.3),

〈
|uφ|2

〉
=
∑
ω,ω′

∂φY
m
` (Ω)∂φY

m′

`′ (Ω) 〈u`,mu`′,m′〉 (E.21)

=
∑
ω

(−1)m
kBT

H̃`

∂φY
m
` ∂φY

−m
`

=
L∑
`=2

kBT

H̃`

∑̀
m=−`

∂φY
m
` ∂φ(Y m

` )∗. (E.22)

The m-dependent part of
〈
|uφ|2

〉
Eq. (E.22) is simplified utilizing the addition the-

orem for spherical harmonics, Eq. (E.13), but now θ1 = θ2 = θ → cos γ = cos2 θ +

sin2 θ cos(φ1− φ2). Differentiating both sides of Eq. (E.13) with respect to φ1 and φ2
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∑̀
m=−`

∂φ1Y
m
` (θ, φ1)∂φ2 [Y m

` (θ, φ2)]∗ (E.23)

=
2`+ 1

4π
∂φ1,φ2P`[cos(γ)]

=
2`+ 1

4π

∂

φ1

(
∂ cos γ

φ2

dP`(cos γ)

d(cos γ)

)
=

2`+ 1

4π

∂

φ1

(
sin2 θ sin(φ1 − φ2)

dP`(cos γ)

d(cos γ)

)
=

2`+ 1

4π

(
− sin4 θ sin2(φ1 − φ2)

d2P`(cos γ)

d(cos γ)2
+ sin2 θ cos(φ1 − φ2)

dP`(cos γ)

d(cos γ)

)
.

(E.24)

Setting φ1 = φ2 = φ in Eq. (E.24),

∑̀
m=−`

∂φY
m
` (θ, φ)∂φ[Y m

` (θ, φ)]∗ =
2`+ 1

4π

(
sin2 θ

dP`(cos γ)

d(cos γ)

)∣∣∣∣
γ=0

(E.25)

=
2`+ 1

4π
sin2 θ

`(`+ 1)

2
. (E.26)

Substituting Eq. (E.26) into
〈
|uφ|2

〉
Eq. (E.22),

〈
|uφ|2

〉
= sin2 θ

kBT

8π

L∑
`=2

`(`+ 1)(2`+ 1)

H̃`

(E.27)

= sin2 θ
〈
|uθ|2

〉
. (E.28)

E.1.3 Spherical UC

Finally, combining
〈
|uθ|2

〉
Eq. (E.20) and

〈
|uφ|2

〉
Eq. (E.28) the UC for a spherical

(s) vesicle is



Appendix E. Vesicle Undulation Correction 234

Ψs
UC ≡ 1 +

1

2

〈
|∇u(Ω)|2

〉
(E.29)

= 1 +
1

2

(〈
|uθ|2

〉
+

1

sin2 θ

〈
|uφ|2

〉)
(E.30)

= 1 +
kBT

16πKc

L∑
`=2

`(`+ 1)(2`+ 1)

(`− 1)(`+ 2)(`2 + `+ σ̄)
, (E.31)

where the definition of H̃` Eq. (E.7) was used. Ψs
UC is a function of Kc, σ̄, and the

vesicle’s size. Barbetta et al. argue that the largest appropriate spherical harmonic

is

L = b
√

4 +R2/a2 − 1c, (E.32)

whereR is the vesicle radius, π/a is the longest considered wavevector, and bxc returns

the integer part of x. For R/a� 1, L ≈ bR/ac. Also, Barbetta et al. conclude that

σ ranges from −10−24 J/Å2 for a vesicle with a radius of 50 nm to −10−26 J/Å2 for

a vesicle with a radius of ∼1µm. Assuming Kc ∼ 10−19 J, then σ̄ Eq. (E.8) is -0.9.

E.2 Planar Geometry

An approximate vesicle undulation correction can be derived using the single planar

membrane height fluctuation spectrum,

〈∣∣z+
Qr

∣∣2〉 =
kBT

Ap

(
1

KcQ4
r + σQ2

r

)
δQr,−Q′r , (E.33)

where σ is the membrane surface tension. In Appendix C.2.1 it was shown that the

undulation correction is dependent on
〈
|∇z+|2

〉
,

〈∣∣∇z+(r)
∣∣2〉 =

〈∣∣∣∣∣∣
∑
Qx,Qy

i(Qxx̂ +Qyŷ)zQr(Qr)e
iQr·r

∣∣∣∣∣∣
2〉

(E.34)

=
kBT

Ap

∑
Qr

1

KcQ2
r + σ

. (E.35)
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Assuming the step size in Qr is sufficiently small,
∑

Qr
is replaced by Ap

(2π)2

∫
dQr.

π/a and π/ã are the longest and shortest Qr modes, respectively, and

〈∣∣∇z+(r)
∣∣2〉 =

kBT

4π2

∫ π/a

π/ã

dQr
1

KcQ2
r + σ

(E.36)

=
kBT

4πKc

[
ln

(
Kcπ

2

a2
+ σ

)
− ln

(
Kcπ

2

ã2
+ σ

)]
.

The single planar (p) membrane UC is

Ψp
UC ≡ 1 +

〈
|∇z+(r)|2

〉
2

(E.37)

= 1 +
kBT

4πKc

[
ln

(
ã

a

)
+

1

2
ln

(
1 + σa2

Kcπ2

1 + σã2

Kcπ2

)]
. (E.38)

E.3 Spherical and Planar UCs Compared

The spherical and planar UCs (Eqs. (E.31) and (E.38), respectively) are reproduced

for convenience,

Ψs
UC ≡ 1 +

kBT

16πKc

L∑
`=2

`(`+ 1)(2`+ 1)

(`− 1)(`+ 2)(`2 + `+ σ̄)
(E.39)

and

Ψp
UC ≡ 1 +

kBT

4πKc

[
ln

(
R

a

)
+

1

2
ln

(
1 + σa2

Kcπ2

1 + σR2

Kcπ2

)]
, (E.40)

respectively, where ã was replaced by R in Eq. (E.40). In Fig. E.1, Eqs. (E.39)

and (E.40) are plotted as functions of R/a for σ = 0 (⇒ σ̄ = 0) and Kc/(kBT ) = 19

(recall that L = b
√

4 +R2/a2 − 1c). Ψp
UC is consistently larger than Ψs

UC because

of differences in the planar and spherical height fluctuation spectra. The planar and

spherical height spectra are plotted in Fig. E.2. While both spectra decay with the

same exponent for large wavenumber, -4, the spherical spectrum decays slower at

small wavenumber. In Fig. E.3 Eq. (E.39) is plotted as a function of σ̄ for values

of R/a = {10, 20, 40, 80} and Kc/(kBT ) = 19. Due to stability considerations,
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the minimum value of σ̄ is -6 [109], and the maximum value is approximately 100,

assuming that σ < 10 mN/m. The value of σ̄ is different for each vesicle, and typical

values of σ̄ are between 20 and 60 for GUVs [110]. The values of σ̄ for ULVs are

unknown. Assuming σ̄ > 0 and a = 17 Å, Ψs
UC < 1.005 for a 250 Å radius ULV,

significantly less than typical ΨUC for stacked bilayers, see Table C.1 (specifically the

“Tilt” and “���Tilt” columns).
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Figure E.1: The spherical and planar UC are plotted as functions of R/a for σ̄ = 0.
The steplike features in Ψs

UC are due to the discrete nature of L in Eq. (E.39).
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Figure E.2: The planar Eq. (E.33) and spherical Eq. (E.6) height spectra are plotted
as functions of the wavenumber for σ = 0. The horizontal axis is log base 2.

0 2 0 4 0 6 0 8 0 1 0 00 . 0 0 0

0 . 0 0 5

0 . 0 1 0

0 . 0 1 5

  1 0
  2 0
  4 0
  8 0

σ̄

Ψ
s U

C
(σ̄

)
−

1

R/a

Figure E.3: Ψs
UC is plotted as a function of σ̄ for several values of R/a.



Appendix F

Relating the Tilt Field and the

Order Parameter

Recently, it has been suggested that molecular tilt makes a significant contribution

to the membrane free energy [21, 32, 1, 22, 31]. In this appendix, predictions of a

tilt-dependent model are related to attributes of fluid phase acyl chains. First in

Section F.1, a single membrane free energy is introduced. Then in Section F.1.1, it is

shown that the chain order parameter Smol and the thermal average of the tilt field are

related. In Section F.1.1, relations between Smol and Kθ are derived, assuming either a

continuum or a discrete set of in-plane wavevectors. Finally in Section F.2, it is shown

that correlations between tilt fields of different bilayers are negligible, consistent with

the common assumption in the analysis of wide angle X-ray scattering from stacked

bilayers [53].

Tilt quantifies the deviation of a director of a lipid molecule from the local mono-

layer normal and is defined,

m ≡ n

n ·N
−N, (F.1)

where N points along the monolayer normal, n is the lipid director, and n ·N = cos θ.

n and N are unit vectors. Using the definition of m Eq. (F.1),

238
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|m|2 =
n · n

(n ·N)2 − 2
n ·N
n ·N

+ (N ·N) (F.2)

=
1

cos2 θ
− 1

= tan2 θ

≈ θ2. (F.3)

F.1 Single Membrane Free Energy

Tilt-dependent predictions are derived using the complete Watson et al. model [1] but

neglecting protrusions. Such a model was previously expressed in Appendix C.2.2,

where it was augmented by an intermembrane interaction term. Here, only a single

membrane is considered so the results from Appendix C.2.2 are used in the limit

B → 0.

F.1.1 Order Parameter Relations

Previously, a relation between the order parameter Smol and Kθ was suggested [93],

KCPL
θ =

3kBT

Ac(1− Smol)
, (F.4)

where Ac is the area of a lipid chain and Kθ is a bilayer modulus. Below, different

relations between Smol and Kθ are derived. Starting from the definition of the order

parameter

Smol ≡
〈

3 cos2 θ − 1

2

〉
(F.5)

=
3 〈cos2 θ〉 − 1

2

≈ 3 〈1− θ2/2〉 − 1

2

= 1− 3

4

〈
θ2
〉

⇒
〈
θ2
〉
≈ 4

3
(1− Smol) , (F.6)
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where θ is the angle between the local monolayer normal and the lipid director. Using

Eq. (F.3), Smol is related to the tilt field of a monolayer of a bilayer

〈∣∣m(1)
∣∣2〉 =

〈∣∣m(2)
∣∣2〉 (F.7)〈

|m̂ + m̄|2
〉
≈ 4

3
(1− Smol) , (F.8)

where the definitions of m̂ and m̄ were used

m̂ ≡ m(1) + m(2)

2
(F.9)

and

m̄ ≡ m(1) −m(2)

2
. (F.10)

Additionally, 〈m̂m̄〉 = 0 since m̂ and m̄ are not coupled in the complete Watson

model [1], and therefore Eq. (F.8) is simplified

〈
|m̂|2

〉
+
〈
|m̄|2

〉
≈ 4

3
(1− Smol) . (F.11)

〈
|m̂|2

〉
was also previously evaluated in Appendix C.2.2. Using Eq. (C.59) for

B = 0,

〈
|m̂|2

〉
=
∑
Qr

kBT

2Ap

(
1

κθ + κtwQ2
r

+
1

κθ

)
, (F.12)

where the factor of Ap is from the definition of the Fourier transform, see Eq. (3.41).〈
|m̄|2

〉
was previously evaluated in Appendix C.2.2. Using Eqs. (C.73) and (C.74),
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〈
|m̄|2

〉
=
∑
Qr

kBT

2Ap

 kbcQ
4
r −

ΩQ2
r

b0
+ kA

b20

kbcκθQ
4
r +Q2

r

(
kAkbc
b20
− κθΩ

b0
− Ω2

4b20

)
+ kAκθ

b20

+
1

κθ + κtwQ2
r


(F.13)

=
∑
Qr

kBT

2Ap

 1

κθ + 4kAkbcQ
2
r−Ω2Q2

r

4(kbcb20Q4
r−Ωb0Q2

r+kA)

+
1

κθ + κtwQ2
r

 (F.14)

=
∑
Qr

kBT

2Ap

(
1

κθf(Qr)
+

1

κθ + κtwQ2
r

)
, (F.15)

where

f(Qr) ≡ 1 +
4kAk

b
cQ

2
r − Ω2Q2

r

4κθ (kbcb
2
0Q

4
r − Ωb0Q2

r + kA)
. (F.16)

Using Eqs. (F.12) and (F.15),
〈∣∣m(1)

∣∣2〉 is evaluated assuming either a continuum or

discrete set of in-plane wavevectors.

Continuum of Tilt Modes

Assuming the step size in Qr is sufficiently small,
∑

Qr
is approximated by Ap

(2π)2

∫
dQr,

〈∣∣m(1)
∣∣2〉 ≈ Ap

(2π)2

∫ π/a

0

dQr
kBT

2Ap

[
1

κθ

(
1 +

1

f(Qr)

)
+

2

κθ + κtwQ2
r

]
(F.17)

=
kBT

4πκθ

∫ π/a

0

dQr Qr

[
1 +

1

f(Qr)
+

2

1 + ξ̃2
twQ

2
r

]
(F.18)

where

ξ̃2
tw ≡ κtw/κθ. (F.19)

For simplicity, let f(Qr)→ 1. Note, however that
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∫ π/a

0

dQr
Qr

f(Qr)
≈ 1.05 (F.20)

<
π2

2a2
≈ 1.708, (F.21)

using the monolayer moduli values in Table C.2 and a = 1.7 nm. Therefore, f(Qr) = 1

overestimates
〈∣∣m(1)

∣∣2〉. Using f(Qr) = 1 to simplify Eq. (F.18),

〈∣∣m(1)
∣∣2〉 =

kBT

2πκθ

 π2

2a2
+

ln

[
1 +

(
ξ̃2

twπ/a
)2
]

2ξ̃2
tw

 (F.22)

=
πkBT

2a2Kθ

(
1 +

ln(1 + τ
′2)

τ ′2

)
, (F.23)

where

τ ′ ≡ ξ̃twπ/a (F.24)

=
Ktw

Kθ

π/a (F.25)

= ξtwπ/a (F.26)

and bilayer moduli were substituted for monolayer moduli assuming that they are

related by a factor of 2.

Substituting
〈∣∣m(1)

∣∣2〉 Eq. (F.23) into Eq. (F.11),

πkBT

2a2Kθ

(
1 +

ln(1 + τ
′2)

τ ′2

)
≈ 4

3
(1− Smol) (F.27)

⇒ Kθ ≈
3πkBT

8a2 (1− Smol)

(
1 +

ln(1 + τ
′2)

τ ′2

)
. (F.28)

Literature values are Ktw = 0.9 × 10−20 J and Kθ = 6.6 × 10−20 J/nm2 [25], giving

ξtw = 3.7 Å. If ξtw � a ≈ 15 Å, the τ ′-dependent part of Eq. (F.28) can be simplified

and
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Kθ ≈
3πkBT

4a2 (1− Smol)
. (F.29)

Eq. (F.29) is similar to KCPL
θ Eq. (F.4), identifying 4a2/π → Ac. However, Ac ≈ 34 Å2

and 4a2/π & 80 Å2, assuming that a > 8 Å. Therefore, for DOPC at 30 ◦C,

Ac = 34 Å2, Smol = SX-ray/1.35 = 0.27/1.35 = 0.2 [53], and a = 8 Å, Eq. (F.29)

predicts a significantly smaller Kθ (19 mN/m) as compared to the prediction of KCPL
θ

Eq. (F.4) (46 mN/m). For increasing a, the disagreement between Kθ Eq. (F.29) and

KCPL
θ Eq. (F.4) increases. KCPL

θ = 46 mN/m compares favorably to the value of 66

mN/m determined from an all-atom CHARMM simulation of DOPC [25]. Assum-

ing a continuum of tilt modes does not yield a reasonable prediction for Kθ given

experimental values of Smol.

Discrete Tilt Modes

Instead of making the replacement
∑

Qr
→ Ap

(2π)2

∫
dQr,

∑
Qr

is evaluated assuming a

discrete set of in-plane wavevectors. There are Nc independent chains, and therefore,

Ap = AcNc. Using Eq. (F.12), Eq. (F.15) and f(Qr) = 1,

〈∣∣m(1)
∣∣2〉 =

∑
Qr

kBT

Apκθ

(
1 +

1

1 + ξ̃2
twQ

2
r

)
(F.30)

=
∑
Qr

2kBT

ApKθ

(
1 +

1

1 + ξ2
twQ

2
r

)
(F.31)

=
2kBT

AcNcKθ

π/
√
Ac∑

Qx=0

π/
√
Ac∑

Qy=0

(
1 +

1

1 + ξ2
twQ

2
r

)
(F.32)

=
2kBT

AcNcKθ

√
Nc∑
i=0

√
Nc∑

j=0

(
1 +

1

1 + (πξtw)2

AcNc
(i2 + j2)

)
(F.33)

=
2kBT

AcKθ

f(Ac, ξtw), (F.34)

where
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f(Ac, ξtw) ≡ 1

Nc

√
Nc∑
i=0

√
Nc∑

j=0

(
1 +

1

1 + (πξtw)2

AcNc
(i2 + j2)

)
. (F.35)

Substituting
〈∣∣m(1)

∣∣2〉 Eq. (F.34) into Eq. (F.11),

〈∣∣m(1)
∣∣2〉 ≈ f(Ac, ξtw)

2kBT

AcKθ

≈ 4

3
(1− Smol) (F.36)

⇒ Kθ ≈ f(Ac, ξtw)
3kBT

2Ac (1− Smol)
. (F.37)

Eq. (F.37) is similar to the relation derived in [93], see KCPL
θ Eq. (F.4). For Ac =

34 Å2 (typical value for DOPC), the value of f(Ac, ξtw) is between about 1 and 2 for

3.7 Å ≤ ξtw ≤ 0 and 25 mN/m ≤ Kθ ≤ 50 mN/m. For ξtw = 0, Kθ Eq. (F.37) is

equivalent to KCPL
θ Eq. (F.4). The effect of twist is to decrease the power in

〈∣∣m̂⊥Qr

∣∣2〉
and

〈∣∣m̄⊥Qr

∣∣2〉 for Qr & 1/ξtw, see Eqs. (C.59) and (C.74), respectively. Therefore, a

nonzero Ktw diminishes
〈∣∣m(1)

∣∣2〉. Evaluating the sum over modes instead of using

an integral approximation results in a Kθ-value that is more consistent with values

determined from experiments and simulations. Similarly, it was previously argued by

Lindahl and Edholm [19] that the mean square amplitude of the undulatory modes

is different by a factor of about 2, depending on whether a sum over the modes or an

integral approximation of the sum is evaluated.

F.2
〈
|m̂j|2

〉
of Membrane Stack

In Section F.1, a single membrane free energy functional was used to predict the ther-

mal average of the tilt field
〈
|m̂|2

〉
. Previously, the wide angle X-ray scattering from

stacked bilayers has been analyzed to determine SX-ray, assuming that fluctuations

of chains in different bilayers are uncorrelated [53]. The aforementioned assump-

tion is now examined by evaluating
〈
|m̂j|2

〉
, using the stacked bilayer free energy Fu

Eq. (3.4).

Following the procedure described in Section 3.3.1, the tilt spectra are derived,
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〈∣∣∣m̂‖Q∣∣∣2〉 = kBT U−1
2,2 δQ,−Q′ (F.38)

=
kBT

Kθ

KcQ
4
r + 4B sin2(QzD/2)

KcQ4
r + 4B (1 + ξ2

θQ
2
r) sin2(QzD/2)

δQ,−Q′ (F.39)〈∣∣m̂⊥Q∣∣2〉 = kBT U−1
3,3 δQ,−Q′ (F.40)

=
kBT

Kθ

δQ,−Q′ . (F.41)

Moving on to calculate
〈
|m̂j|2

〉
using Eqs. (F.39) and (F.41),

〈
|m̂j|2

〉
=

1

ApJ

∑
Q,Q′

[ 〈∣∣∣m̂‖Q∣∣∣〉+
〈∣∣m̂⊥Q∣∣〉 ]ei(Qr+Q′r)·r+i(Qz+Q′z)jD (F.42)

=
kBT

ApJKθ

∑
Q

(
1 +

KcQ
4
r + 4B sin2(QzD/2)

KcQ4
r + 4B (1 + ξ2

θQ
2
r) sin2(QzD/2)

)
. (F.43)

Substituting
∑

Q →
Ap

(2π)2

∫
dQr

JD
2π

∫ π/D
−π/D dQz,

〈
|m̂j|2

〉
=
kBTD

8π3Kθ

∫
dQr

∫ π/D

−π/D
dQz

(
1 +

KcQ
4
r + 4B sin2(QzD/2)

KcQ4
r + 4B (1 + ξ2

θQ
2
r) sin2(QzD/2)

)
(F.44)

=
kBTD

4π2Kθ

∫
dQr Qr

∫ π/D

−π/D
dQz

(
1 +

ξ4Q4
r/4 + sin2(QzD/2)

ξ4Q4
r/4 + (1 + ξ2

θQ
2
r) sin2(QzD/2)

)
=

kBT

4π2Kθ

∫
dQr Qr

∫ π

−π
dω

(
1 +

ξ4Q4
r/4 + sin2(ω/2)

ξ4Q4
r/4 + (1 + ξ2

θQ
2
r) sin2(ω/2)

)
. (F.45)

Substituting v = ξ2Q2
r/2 into Eq. (F.45),
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〈
|m̂j|2

〉
=

kBT

4π2ξ2Kθ

∫ τ

0

dv

∫ π

−π
dω

(
1 +

v2 + sin2(ω/2)

v2 + (1 + v`) sin2(ω/2)

)
(F.46)

=
kBT

4π2ξ2Kθ

∫ τ

0

dv
1

1 + v`

∫ π

−π
dω

(
1 + v`+

v2 + sin2(ω/2)

v2/(1 + v`) + sin2(ω/2)

)
=

kBT

4π2ξ2Kθ

∫ τ

0

dv
1

1 + x`

∫ π

−π
dω

(
1 + v`+

v2 + 1−cosω
2

v2/(1 + v`) + sin2(ω/2)

)
=

kBT

4π2ξ2Kθ

∫ τ

0

dv
1

1 + v`

(
2π(1 + v`) + 2π

v2 + 1/2√
ℵ2 + ℵ4

− 2π

2

1 + 2ℵ2 − 2
√
ℵ2 + ℵ4

√
ℵ2 + ℵ4

)
,

(F.47)

where ℵ2 = v2

1+v`
. Simplifying the above expression,

〈
|m̂j|2

〉
=

kBT

4π2ξ2Kθ

∫ τ

0

dv 2π

(
1 +

v2`+
√

1 + v`+ v2

(1 + v`)
√

1 + v`+ v2

)
(F.48)

=
kBT

2πξ2Kθ

[
v + fc(v) +

1

`
ln

(
(1 + v`)2

[`+ 2v + 2fc(v)][`− 2v + `2v + 2fc(v)]

)

− `

2
ln [`+ 2v + 2fc(v)]

]∣∣∣∣∣
τ

0

≈ kBT

2πξ2Kθ

2τ (F.49)

=
πkBT

2a2Kθ

, (F.50)

where fc(v) =
√

1 + v`+ v2.
〈
|m̂j|2

〉
Eq. (F.50) is the same as

〈
|m̂|2

〉
Eq. (F.23)

in the limit ξtw → 0. Therefore, correlations in the tilt fields of different bilayers

insignificantly contribute to
〈
|m̂j|2

〉
, and consequently, the common assumption used

to analyze wide angle X-ray scattering from fluid phase acyl chains is supported.



Bibliography

[1] M. C. Watson, E. S. Penev, P. M. Welch, and F. L. H. Brown, “Thermal

fluctuations in shape, thickness, and molecular orientation in lipid bilayers,”

The Journal of Chemical Physics, vol. 135, no. 24, 2011.

[2] F. O. Schmitt, R. S. Bear, and G. L. Clark, “X-ray diffraction studies on nerve,”

Radiology, vol. 25, no. 2, pp. 131–151, 1935.

[3] Y. Levine and M. Wilkins, “Structure of oriented lipid bilayers,” Nature,

vol. 230, no. 11, pp. 69–72, 1971.

[4] V. Luzzati and A. Tardieu, “Lipid phases: structure and structural transitions,”

Annual Review of Physical Chemistry, vol. 25, no. 1, pp. 79–94, 1974.

[5] J. N. Israelachvili, Intermolecular and surface forces: revised third edition. Aca-

demic press, 2011.

[6] S. J. Singer and G. L. Nicolson, “The fluid mosaic model of the structure of cell

membranes,” Science, vol. 175, no. 4023, pp. 720–731, 1972.

[7] Y.-H. M. Chan and S. G. Boxer, “Model membrane systems and their applica-

tions,” Current opinion in chemical biology, vol. 11, no. 6, pp. 581–587, 2007.

[8] Y. Shibata, J. Hu, M. M. Kozlov, and T. A. Rapoport, “Mechanisms shaping the

membranes of cellular organelles,” Annual Review of Cell and Developmental,

vol. 25, pp. 329–354, 2009.

[9] L. V. Chernomordik and M. M. Kozlov, “Protein-lipid interplay in fusion and

fission of biological membranes,” Annual review of biochemistry, vol. 72, no. 1,

pp. 175–207, 2003.

247



Bibliography 248

[10] W. Helfrich, “Elastic properties of lipid bilayers: theory and possible experi-

ments.,” Zeitschrift für Naturforschung. Teil C: Biochemie, Biophysik, Biologie,

Virologie, vol. 28, no. 11, p. 693, 1973.

[11] P. B. Canham, “The minimum energy of bending as a possible explanation

of the biconcave shape of the human red blood cell,” Journal of Theoretical

Biology, vol. 26, no. 1, pp. 61–81, 1970.

[12] R. Courant and D. Hilbert, Methods of mathematical physics, vol. 1. CUP

Archive, 1966.

[13] D. H. Boal, Mechanics of the Cell. Cambridge University Press, 2012.

[14] M. Schneider, J. Jenkins, and W. Webb, “Thermal fluctuations of large quasi-

spherical bimolecular phospholipid vesicles,” Journal de Physique, vol. 45, no. 9,

pp. 1457–1472, 1984.

[15] E. Evans and W. Rawicz, “Entropy-driven tension and bending elasticity in

condensed-fluid membranes,” Phys. Rev. Lett., vol. 64, no. 17, p. 2094, 1990.

[16] J. F. Nagle, “Introductory lecture: Basic quantities in model biomembranes,”

Faraday Discuss., vol. 161, pp. 11–29, 2013.

[17] R. Dimova, “Recent developments in the field of bending rigidity measurements

on membranes,” Advances in colloid and interface science, vol. 208, pp. 225–234,

2014.

[18] R. Goetz, G. Gompper, and R. Lipowsky, “Mobility and elasticity of self-

assembled membranes,” Phys. Rev. Lett., vol. 82, pp. 221–224, Jan 1999.

[19] E. Lindahl and O. Edholm, “Mesoscopic undulations and thickness fluctuations

in lipid bilayers from molecular dynamics simulations,” Biophysical Journal,

vol. 79, no. 1, pp. 426–433, 2000.

[20] S. J. Marrink and A. E. Mark, “Effect of undulations on surface tension in

simulated bilayers,” The Journal of Physical Chemistry B, vol. 105, no. 26,

pp. 6122–6127, 2001.

[21] E. R. May, A. Narang, and D. I. Kopelevich, “Role of molecular tilt in thermal

fluctuations of lipid membranes,” Phys. Rev. E, vol. 76, p. 021913, Aug 2007.



Bibliography 249

[22] M. C. Watson, E. G. Brandt, P. M. Welch, and F. L. H. Brown, “Determining

biomembrane bending rigidities from simulations of modest size,” Phys. Rev.

Lett., vol. 109, p. 028102, Jul 2012.

[23] G. Khelashvili and D. Harries, “How cholesterol tilt modulates the mechani-

cal properties of saturated and unsaturated lipid membranes,” The Journal of

Physical Chemistry B, vol. 117, no. 8, pp. 2411–2421, 2013.

[24] M. C. Watson, A. Morriss-Andrews, P. M. Welch, and F. L. Brown, “Thermal

fluctuations in shape, thickness, and molecular orientation in lipid bilayers.

ii. finite surface tensions,” The Journal of chemical physics, vol. 139, no. 8,

p. 084706, 2013.

[25] Z. A. Levine, R. M. Venable, M. C. Watson, M. G. Lerner, J.-E. Shea, R. W.

Pastor, and F. L. Brown, “Determination of biomembrane bending moduli

in fully atomistic simulations,” Journal of the American Chemical Society,

vol. 136, no. 39, pp. 13582–13585, 2014.

[26] E. G. Brandt, A. R. Braun, J. N. Sachs, J. F. Nagle, and O. Edholm, “Interpre-

tation of fluctuation spectra in lipid bilayer simulations,” Biophysical journal,

vol. 100, no. 9, pp. 2104–2111, 2011.

[27] J. C. Albert, L. T. Ray, and J. F. Nagle, “Testing procedures for extracting

fluctuation spectra from lipid bilayer simulations,” The Journal of chemical

physics, vol. 141, no. 6, p. 064114, 2014.

[28] F. C. MacKintosh and T. C. Lubensky, “Orientational order, topology, and

vesicle shapes,” Phys. Rev. Lett., vol. 67, pp. 1169–1172, Aug 1991.

[29] T. C. Lubensky and F. C. MacKintosh, “Theory of ripple phases of lipid bilay-

ers,” Phys. Rev. Lett., vol. 71, pp. 1565–1568, Sep 1993.

[30] M. Hamm and M. M. Kozlov, “Tilt model of inverted amphiphilic mesophases,”

The European Physical Journal B-Condensed Matter and Complex Systems,

vol. 6, no. 4, pp. 519–528, 1998.

[31] M. Hamm and M. M. Kozlov, “Elastic energy of tilt and bending of fluid mem-

branes,” The European Physical Journal E, vol. 3, no. 4, pp. 323–335, 2000.



Bibliography 250

[32] M. Jablin, K. Akabori, and J. Nagle, “Experimental support for tilt-dependent

theory of biomembrane mechanics,” Physical review letters, vol. 113, no. 24,

p. 248102, 2014.

[33] I. Pascher, M. Lundmark, P.-G. Nyholm, and S. Sundell, “Crystal struc-

tures of membrane lipids,” Biochimica et Biophysica Acta (BBA)-Reviews on

Biomembranes, vol. 1113, no. 3, pp. 339–373, 1992.

[34] M. Wiener, R. Suter, and J. Nagle, “Structure of the fully hydrated gel phase of

dipalmitoylphosphatidylcholine,” Biophysical journal, vol. 55, no. 2, pp. 315–

325, 1989.

[35] M. C. Wiener and S. H. White, “Fluid bilayer structure determination by the

combined use of x-ray and neutron diffraction. i. fluid bilayer models and the

limits of resolution.,” Biophysical journal, vol. 59, no. 1, p. 162, 1991.

[36] D. Roux and C. Safinya, “A synchrotron x-ray study of competing undula-

tion and electrostatic interlayer interactions in fluid multimembrane lyotropic

phases,” Journal de Physique, vol. 49, no. 2, pp. 307–318, 1988.

[37] D. C. Wack and W. W. Webb, “Measurement by x-ray diffraction methods of

the layer compressional elastic constant b in the lyotropic smectic-a (l α) phase

of the lecithin-water system,” Physical Review A, vol. 40, no. 3, p. 1627, 1989.

[38] R. Zhang, R. M. Suter, and J. F. Nagle, “Theory of the structure factor of lipid

bilayers,” Phys. Rev. E, vol. 50, pp. 5047–5060, Dec 1994. (See appendix).

[39] J. F. Nagle and S. Tristram-Nagle, “Structure of lipid bilayers,” Biochimica et

Biophysica Acta (BBA)-Reviews on Biomembranes, vol. 1469, no. 3, pp. 159–

195, 2000.

[40] J. Prost and P. G. De Gennes, The physics of liquid crystals. No. 83, Oxford

university press, 1995.
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