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I. RESULTS FOR ALTERNATIVE DIRECTOR DEFINITIONS

A. Alternative Director Definitions

The goal of this section is to investigate the tilt-length correlations for the following alternative definitions of the
tail director:

A. Molecular directors, which characterize tilt of an entire molecule, rather than an individual tail. This
approach to the director definition was taken in the earlier work [1–3]. Here, we investigate two different definitions
of molecular directors (see Fig. S1a):

1. Mean tail director nm, defined as the average of the end-to-end directors
−−−→
CNC1 of individual tails of a molecule.

Specifically, nm is defined as the vector pointing from C
(m)
N to C

(m)
1 , where C

(m)
i is the midpoint between atoms

Ci of different tails of a lipid molecule.

2. Overall molecular director nP , which accounts for contributions of both the head- and tail-groups to molecular

tilt. Following [3], we define nP as the vector pointing from C
(m)
N to the phosphorus atom in the lipid head-group.

Similarly to the individual tail directors, the length L of a molecular director is defined as the distance between its
end-points.

B. Gyration director ng defined as the principal direction of gyration of a lipid tail corresponding to its largest
radius of gyration. In the calculations of the tensor of gyration S of a hydrocarbon chain, we neglect hydrogen atoms
belonging to the chain, i.e.

S =
1

N

N
∑

k=1

(rk − rC)⊗ (rk − rC), (1)

where the summation is performed over the chain carbon atoms, rC is the center of mass of these atoms, and rk is
the position of the k-th atom. Furthermore, we require that the gyration director passes through rC . The length Lg

(a)

ng

(b)

Figure S1. (a) End-to-end directors of individual lipid tails (solid arrows) and the molecular directors nm (blue dashed arrow)
and nP (green dashed arrow). Spheres of different colors represent atoms of different elements: yellow = C, white = H, red =
O, green = P, blue = N. (b) Gyration director of a hydrocarbon chain. For clarity, only carbon carbon atoms of the chain are
shown (yellow spheres); the black spheres represent projections of the positions of the carbon atoms onto the gyration director.
The blue sphere represents the chain center of mass.
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of ng is defined as the end-to-end length of the chain formed by the projections of the carbon atoms onto ng (see
Fig. S1b), i.e.

Lg = max
k

(rk − rC) · n̂g −min
k

(rk − rC) · n̂g, (2)

where n̂g = ng/|ng| is the normalized gyration director.
Although radii of gyration are often used to characterize macromolecular shapes [4–6], the property of the tensor of

gyration most relevant to this work appears to be little known. Specifically, line lmin, defined as having the smallest
mean-square displacement (MSD) from a group of atoms, contains the gyration director ng of this group. To prove
this, let us consider a group of N atoms with coordinates rk and obtain line lmin with the smallest MSD from these
atoms,

∆2 =
1

N

N
∑

k=1

∆2
k → min . (3)

Here, ∆k is the distance from the k-th atom to the line. Define this line generally as being directed along unit vector
û and passing through some point with coordinates given by vector r0. Then

∆2
k = |rk − r0|

2 − [(rk − r0) · û]
2. (4)

Let us now consider a system of coordinates with the origin at the center of mass,
∑

k rk = 0. Then Eqs. (3), (4)
yield:

∆2 =
1

N

N
∑

k=1

|rk|
2 +

[

|r0|
2 − (r0 · û)

2
]

− ûTSû. (5)

The first term in (5) is independent of r0 and û. The terms contained in the square brackets represent the difference
between the squared lengths of the vector r0 and the projection of this vector onto û. This difference is minimized if
r0 is parallel to û, i.e. line lmin passes through the origin (center of mass). Finally, to minimize ∆2, the unit vector
û should maximize ûTSû, i.e. û is an eigenvector corresponding to the largest radius of gyration. Hence, line lmin

contains the gyration director.

B. Analysis Results

Dependence of the mean director length L̄(m) on tilt m for all considered director definitions is shown in Fig. S2.
In all cases, increasing tilt leads to a slight decrease in L̄(m). Moreover, L̄(m) for the end-to-end and gyration tail
directors are nearly identical and the normalized lengths L̄(m)/L̄(0) of both considered molecular directors, nm and
nP , exhibit a very similar dependence on tilt. The latter observation suggests that the tilt-induced lipid shortening
is dominated by shortening of tails, with head-groups making a negligible contribution.
The conditional distributions P (L|m) of the directors nm,nP , and ng are shown in Fig. S3. These distributions

exhibit behavior similar to that of the end-to-end tail directors
−−−→
CNC1 considered in the paper: as tilt increases, the

distributions become slightly wider and their peak shifts towards smaller L.

II. 2-ROD MODEL

A. Validation of the 2-rod Model for the DLPC bilayer

In this section, we present evidence that the mechanism of the tilt-induced tail shortening discussed in Section V
of the paper is applicable to other saturated lipids. To this end, we repeated the analysis of Section V for a DLPC
lipid bilayer. Results of this analysis are summarized in Figures S4 and S5. Qualitative similarity between the DLPC
and DPPC results indicate that the 2-rod model holds for a wide class of saturated PC lipids. Moreover, since effect
of the head-group in the lipid shortening is negligible (see Fig. S2), it is likely that the conclusions of this paper hold
for saturated lipids with different head-groups.
In the remainder of this section, we report additional analysis in support of the 2-rod model. Results of this analysis

are the same for the DPPC and DLPC bilayers. Hence, unless stated otherwise, only data for the DPPC bilayer are
shown.
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Figure S2. Dependence of the average tail director length L̄ on its tilt m for different director definitions. In this plot, L̄(m) is
normalized to its value at zero tilt: L̄(0) = 1.42 nm for the molecular directors nm, L̄(0) = 1.97 nm for the molecular directors
nP , and L̄(0) = 1.52 nm for both the end-to-end and gyration directors of individual tails. The standard errors of the shown
L̄(m) do not exceed 0.01 nm.
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Figure S3. Conditional probabilities P (L|m) of the length L of (a) molecular directors nm, (b) molecular directors nP , and
(c) gyration directors ng .

B. Gyration Director

In this section we demonstrate that conclusions of Section V of the paper hold for the gyration tail director defined
in Section I of SM. The hinge point of the 2-rod model is defined here as the position of the chain carbon atom Ch

located farthest from the gyration director. Gyration directors n1 and n2 of the chain segments C1-Ch and Ch-CN

are defined similarly to the gyration director of the entire chain. As in the case of the end-to-end directors, the
average angle between the gyration directors n1 and n2 of the chain segments decreases as the tilt m of the overall
tail director n increases, see Fig. S6. In addition, Fig. S7 indicates that dependence of the mean director lengths on
the tilts m and m1 of the gyration directors n and n1 is qualitatively the same as that for the end-to-end directors
(see Fig. 6 of the paper).

C. Additional Validation

The two-rod model is useful only if it provides a more accurate representation of the tail shape than the single-rod
model assumed in the existing theories. To compare accuracy of the single- and two-rod models, we obtain the mean
deviation of the chain carbon atoms from the overall chain director n and the directors n1 and n2 of the chain
segments C1-Ch and Ch-CN (Ch is the hinge atom). Specifically, we compute the root mean square displacement
(RMSD) of carbon atoms from the directors,

∆(n) =

√

∑i2
i=i1

∆2
i (n)

i2 − i1 + 1
. (6)
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Figure S4. Same as Fig. 4 of the paper but for the DLPC bulayer.
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Figure S5. Same as Fig. 6 of the paper but for the DLPC bilayer. Here, the normalization values are L̄(m = 0) = 1.11 nm,
L̄1(m = 0) = 0.63 nm, L̄2(m = 0) = 0.60 nm, L̄1(m1 = 0) = 0.67 nm, and b̄1(m = 0) = b̄1(m1 = 0) = 0.10 nm.
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Figure S6. Average relative orientation 〈cosφ〉 of the gyration directors n1 and n2 of the tail segments versus tilt m of the
overall tail director n.
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Figure S7. Same as Fig. 6 of the paper but for the gyration directors. Here, the normalization values are L̄(m = 0) = 1.52 nm,
L̄1(m = 0) = 0.85 nm, L̄2(m = 0) = 0.80 nm, L̄1(m1 = 0) = 0.90 nm, and b̄1(m = 0) = b̄1(m1 = 0) = 0.10 nm.

Table S1. Root mean square displacements ∆̄(n, 0) of atoms from the overall tail director n and the directors n1 and n2 of the
tail segments C1-Ch and Ch-CN at zero tail tilt. Data for both DPPC and DLPC bilayers are shown.

Lipid Director type ∆̄(n, 0) ∆̄(n1, 0) ∆̄(n2, 0)

DPPC End-to-end 1.9 Å 1.0 Å 1.0 Å

Gyration 1.1 Å 0.6 Å 0.6 Å

DLPC End-to-end 1.5 Å 0.8 Å 0.8 Å

Gyration 0.9 Å 0.5 Å 0.5 Å

Here, n represents one of the directors (n = n, n1, or n2), ∆i(n) is the distance between atom Ci and director n.
For the end-to-end directors, the summation is performed over all carbon atoms in the chain (or the chain segment)
excluding the chain (segment) end-points, i.e.







i1 = 2, i2 = N − 1 for n = n,
i1 = 2, i2 = h− 1 for n = n1, and
i1 = h+ 1, i2 = N − 1 for n = n2.

(7)

For the gyration directors, the end-points are included in the summation, since these points do not necessarily lie on the
directors. The RMSDs for individual chains are ensemble averaged to obtain mean RMSDs, ∆̄(n,m), corresponding
to different chain tilts m.
The RMSDs of chains with zero tilt are listed in Table S1. Not surprisingly, the RMSDs are smaller for the gyration

directors. Nevertheless, for both considered types of the directors, the 2-rod model yields a better approximation
to the chain shape, as evidenced by the substantial difference between the overall tail directors, ∆̄(n,m), and the
directors of the individual rods, ∆̄(n1,m) and ∆̄(n2,m) of the 2-rod model. If the tail shape were statistically a
single cylinder, the RMSDs of the 2-rod model would be only marginally smaller than the single-rod RMSD.
Effect of the chain tilt on the RMSDs is shown in Fig. S8. While all RMSDs grow with increasing tilt, the RMSDs of

the 2-rod model do not grow as fast as those of the single-rod model, which indicates that the single-rod approximation
becomes even less accurate as the tail tilt increases.

D. Distribution of Gauche Rotamers in Lipid Tails

The purpose of this section is to connect the 2-rod model for lipid tails with distribution of gauche rotamers along
the tails. To this end, we compute (i) the fraction Pg,h of gauche rotamers in dihedral angles with the hinge atom
Ch in the central bond and (ii) the fractions Pg,1 and Pg,2 of gauche rotamers in the interior of segments C1-Ch and
Ch-CN . I.e., dihedral angle Ci-Ci+1-Ci+2-Ci+3 contributes to Pg,h if i = h− 2 or i = h− 1, to Pg,1 if i < h− 2, and
to Pg,2 if i > h− 1.
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Figure S8. Effect of the chain tilt on the RMSDs of carbon atoms from the overall tail director n and the rod directors n1 and
n2. RMSDs corresponding to end-to-end and gyration directors are shown by solid and dashed lines, respectively. The plotted
RMSDs are normalized to their values at zero tilt.
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Figure S9. Fraction of gauche rotamers versus tilt m in the entire tail (Pg), at the hinge atom (Pg,h), and in the segments
C1-Ch and Ch-CN (Pg,1 and Pg,2, respectively).

The dependence of Pg,h, Pg,1, and Pg,2 on the chain tilt is shown in Fig. S9. For comparison, the fraction Pg(m) of
the gauche rotamers in the entire chain is also shown. The data shown in Fig. S9 were obtained using the end-to-end

tail director
−−−→
CNC1 to identify the hinge atom Ch. The gyration director yields nearly identical results (data not

shown).
It is evident from Fig. S9 that a dihedral angle containing the hinge atom Ch is more likely to be in gauche than

trans conformation even at zero chain tilt. On the other hand, the fraction of the gauche conformations inside the
segments C1-Ch and Ch-CN is smaller than the average fraction for the entire chain. This is in agreement with the
relative insensitivity of the segment length per methylene group, b̄1 and b̄2, to the chain tilt (see Fig. 6 in the paper
and Fig. S7 in SM).

III. TILT-LENGTH CORRELATION PREDICTED BY THE CONTINUUM MODEL FOR LIPID

BILAYERS

In section IV of the paper it is shown that the continuum model for a single monolayer predicts zero correlation
between the chain length and tilt. We now turn from monolayers to bilayers and investigate the effect of monolayer
coupling on the tilt-length correlation.
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The total bilayer energy is the sum of energies FW of individual monolayers [see Eq. (21) of the paper] and the
energy Fcoupl of coupling between the monolayers. Assume harmonic coupling,

Fcoupl =
km
2

(z(1)m − z(2)m )2, (8)

where km is the coupling strength, the superscript (α) indicates the monolayer number (α = 1, 2; α = 1 corresponds

to the upper monolayer), and z
(α)
m is the surface passing through end-points of lipid tails of the α-th monolayer. Up

to the required accuracy,

z(α)m = z(α) + (−1)αL(α), (9)

where z(α)(x, y) is the dividing surface of the α-th monolayer, i.e. surface separating the lipid head- and tail-groups.
It is convenient to introduce symmetric and antisymmetric modes,

z+ =
z(1) + z(2)

2
, z− =

z(1) − z(2) − 2L0

2
, (10)

l+ =
l(1) + l(2)

2
, l− =

l(1) − l(2)

2
. (11)

Then

Fcoupl = 2km(z− − L0l
+)2. (12)

The z-components of the tilt and director vectors do not contribute to the quadratic approximation to the monolayer
free energy [Eq. (21) of the paper] and it is thus sufficient to consider two-dimensional vectors m = (mx,my) and
n = (nx, ny). Up to the required accuracy, these vectors are related by the following equation:

n(α) = m(α) + (−1)α+1∇z(α), (13)

It then follows that

n+ = m+ +∇z− and n− = m− +∇z+, (14)

where

m+ =
m(1) +m(2)

2
, m− =

m(1) −m(2)

2
, (15)

n+ =
n

(1) + n

(2)

2
, n− =

n

(1) − n

(2)

2
(16)

(17)

are the symmetric and antisymmetric components of the vectors m and n.
The total bilayer energy can then be written as

Fb = FW(n(1),m(1), l(1)) + FW(n(2),m(2), l(2)) + Fcoupl

= 2FW(n−,m−, l−) +G(z−,m+, l+), (18)

where

G(z−,m+, l+) = 2
[

FW(∇z− +m+,m+, l+) + km(z− − L0l
+)2

]

. (19)

The variables (n−,m−, l−) are decoupled from (z−,m+, l+). Furthermore, up to the factor of two, the free energy of
(n−,m−, l−) is the same as that of a single monolayer. Hence, l− is decoupled from the tilt modes. However, l+ may
be coupled with the tilt modes m+ because the monolayer-monolayer interactions introduce coupling between l+ and
z− and z− is coupled with m+ through the (∇ · n+)2 term in FW.
Eq.(18) is a slight generalization of the expression for the free energy developed by Watson et al. [2] where it was

assumed that z
(1)
m = z

(2)
m = zm, i.e. km → ∞. In this case, l+ = z−/L0 and l− = −ǫ/L0, where ǫ ≡ zm − z+. In the

remainder of this section we assume that km = ∞, i.e. G(z−,m+) = 2FW(∇z− +m+,m+, z−/L0). It is shown in
Section IV that finite km yields similar results.
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Fourier transforms of the bilayer degrees of freedom are defined by

gq =
1

√

Ap

∫

g(r)e−iq·rdr, g(r) =
1

√

Ap

∑

q

gqe
iq·r, (20)

where r = (x, y), q = (qx, qy) is the wavevector, Ap is the area of the membrane projection onto the x − y plane,

and the relevant g(r) are z−(r), m||(r), and l+(r). Here, m||(r) is the longitudinal (curl-free) component of the tilt
vector field m+. The Fourier transform of m||(r) corresponds to the projection of m+

q on q. Following [2] we omit

the contribution of the transverse (divergence-free) component of m+ to the free energy since it is decoupled from
other degrees of freedom of the bilayer.
Performing Fourier transform of G(z−,m+) and integrating over the entire bilayer yields [2]

G =
∑

q

f∗qBqfq, (21)

where

fq = (z−q ,m||
q), (22)

the asterisk denotes adjoint matrix, and

Bq =

[

(κq4 − q2Ω/L0 + kA/L
2
0) −iq(κq2 − Ω/2L0)

iq(κq2 − Ω/2L0) κq2 + κθ

]

(23)

is the force matrix. The covariance between the longitudinal tilt component m
||
q and the chain length is

〈(l+)∗q′m||
q〉 = δq,q′

kBT

2L0
(B−1

q )21 = −δq,q′iq kBTc(q
2), (24)

where

c(q2) =
κL0q

2/2− Ω/4

L2
0κκθq4 + (κkA − ΩL0κθ − Ω2/4)q2 + κθkA

. (25)

The covariance between the chain tilt and length in real space is

C+
lm(r) ≡ 〈l+(r0)m

+(r0 + r)〉 = −
kBT

Ap

∑

q

iqc(q2)eiq·r = −∇C+
lφ(r), (26)

where C+
lφ(r) is the covariance between the tail length l+ and the scalar potential φ+ of the tilt fieldm+ (−∇φ+ = m||),

C+
lφ(r) =

kBT

Ap

∑

q

c(q2)eiq·r ≈
kBT

4π2

∫

c(q2)eiq·rdq =
kBT

2π

∫ ∞

0

c(q2)J0(rq)q dq. (27)

Here, J0(r) is the Bessel function. The last expression in Eq. (27) emphasizes that C+
lφ has no azimuthal dependence

and, hence, only the r-component of C+
lm is not zero and is equal to

C+
lm(r) = −

∂C+
lφ(r)

∂r
≈

kBT

2π

∫ qmax

0

c(q2)J1(rq)q
2 dq, (28)

where qmax is the cut-off wavenumber.
Eq. (28) indicates that coupling between the monolayers induces a long-range correlation between the chain tilt

and length. However, since C+
lm(0) = 0, this coupling is unlikely to induce correlation between tilt and length of the

same chain. Nevertheless, one cannot completely rule this out, since chains are not localized to one value of r and
C+

lm(r) 6= 0 for small r 6= 0. Therefore, the tilt-length correlation should be considered over a range of values of r

corresponding to a tilted chain. E.g., for a tilt angle of 30◦ and an effective chain length of 12 Å the range for r is
6 Å. Such small values of r are outside of the range of the continuum model. Hence, even though Eq. (28) indicates
that C+

lm(r) 6= 0 for this r, the specific value of C+
lm(r) is likely different from the one predicted by Eq. (28).
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IV. TILT-LENGTH CORRELATION PREDICTED BY THE CONTINUOUS MODEL WITH A

HARMONIC COUPLING BETWEEN MONOLAYERS

In section III we investigated the tilt-length correlations assuming infinitely large value of the coupling constant
km. Here, we apply a similar analysis to the case of finite km. In this case, the free energy of the modes (z−,m+, l+)
can be written as

G(z−,m+, l+) =
∑

q

f̃∗qB̃qf̃q, (29)

where

f̃q = (z−q ,m||
q, l

+
q ) (30)

and

B̃q =













κq4 + 2km −iκq3 −Ωq2/2− 2kmL0

iκq3 κq2 + κθ −iqΩ/2

−Ωq2/2− 2kmL0 iqΩ/2 kA + 2kmL2
0













. (31)

The covariance between the Fourier modes of the longitudinal component of m and the chain length is

〈(l+)∗q′m||
q〉 = δq,q′

kBT

2
(B̃−1

q )2,3 = −δq,q′iq kBT c̃(q
2), (32)

where

c̃(q2) =
κL0q

2/2− Ω/4

[L2
0κκθ + κθ/2km(κkA − Ω2/4)] q4 + (κkA − ΩL0κθ − Ω2/4)q2 + κθkA

(33)

Comparison of Eq. (33) with Eq. (25) reveals that the only effect of finite km is a correction to the coefficient in the
q4 term in the denominator. Therefore, finite km does not introduce any qualitatively new features to the covariance
of the chain length and tilt.
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