next up previous
Up: Small Angle X-ray Scattering From Previous: DISCUSSION

References

Als-Nielsen, J., J. D. Litster, R. J. Birgeneau, M. Kaplan, C. R. Safinya, A. Lindegaad-Anderson, and S. Mathiesen. 1980. Observation of algebraic decay of positional order in a smectic liquid crystal. Phys. Rev. B 22:312-320.

Blaurock, A. E., and J. C. Nelander. 1976. Disorder in nerve myelin: analysis of the diffuse X-ray scattering. J. Mol. Biol. 103:421-431.

Caillé, A. 1972. Physique cristalline - Remargues sur la diffusion des rayons X dans les smectiques A. C. R. Acad.Sc. Paris, 274 Serie B:891-893.

DeGennes, P. G. 1974. The Physics of Liquid Crystals. Oxford Press, Clarendon. pp 284-286.

Franks, N. P., and W. R. Lieb. 1979. The structure of lipid bilayers and the effects of general anaesthetics, an X-ray and neutron diffraction study. J. Mol. Biol. 133:469-500.

Guinier, A. 1963. X-Ray Diffraction. W. H. Freeman and Company, San Francisco. pp 300 and 304.

Hosemann, R, and S. N. Bagchi. 1962. Direct Analysis of Diffraction by Matter. Amsterdam, North-Holland.

Janiak, M., D. M. Small and G. G. Shipley. 1976. Nature of the thermal pretransition of synthetic phospholipids: dimyristoyl and dipalmitoyllecithin. Biochemistry 15:4575-4580.

Kim, J. T., J. Mattai, and G. G. Shipley. 1987. Gel phase polymorphism in ether-linked dihexadecylphosphatidylcholine bilayers. Biochemistry 26:6599-6603.

McIntosh, T. J., and S. A. Simon. 1986. Hydration and bilayer deformation: a reevaluation. Biochemistry 25:4058-4066 .

McIntosh, T. J., and S. A. Simon. 1986. Area per molecule and distribution of water in fully hydrated dilauroylphosphatidylethanolamine bilayers. Biochemistry 25:4948-4952.

Nagle, J. F. 1993. Area/lipid of bilayers from NMR. Biophys. J. 64:1476-1481.

Rand, R. P., and V. A. Parsegian. 1989. Hydration forces between phopholipid bilayers. Biochim. Biophys. Acta 988:351-376.

Roux, D., and C. R. Safinya. 1988. A synchrotron X-ray study of competing undulation and electrostatic interlayer interactions in fluid multimembrane lyotropic phases. J. Phys. France 49:307-318.

Schwartz, S., J. E. Cain, E. A. Dratz, and J. K. Blasie. 1975. An Analysis of lamellar X-ray diffraction from disordered membrane multilayers with application to data from retinal rod outer segments. Biophys. J. 15:1201-1233.

Thurmond, R. L., S. W. Dodd, and M. F. Brown. 1991. Molecular areas of phospholipids as determined by NMR spectroscopy. Biophys. J. 59:108-113.

Torbet, J., and M. H. F. Wilkins. 1976. X-ray diffraction studies of lecithin bilayers. J. Theor. Biol. 62:447-458.

Tristram-Nagle, S., R. Zhang, R. M. Suter, C. R. Worthington, W.-J. Sun, and J. F. Nagle. 1993. Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins. Biophys. J. 64:1097-1109.

Wiener, M. C., R. M. Suter, and J. F. Nagle. 1989. Structure of the fully hydrated gel phase of DPPC. Biophys. J. 55:315-325.

Wiener M. C., and S. H. White. 1991. Fluid bilayer structure determination by the combined use of X-ray and neutron diffraction I: Fluid bilayer models and the limits of resolution. Biophys. J. 59:162-173.

Worthington, C. R., and R. S. Khare. 1978. Structure determination of lipid bilayers. Biophys. J. 23:407-425.

Worthington, C. R., and G. F. Elliott, 1989. Helical diffraction. I. The paracrystalline helix and disorder analysis. Acta Cryst. A45:645-54.

Worthington, C. R. 1989. The lamellar structure of intact vertebrate retinal photoreceptors: A verification of phases. Photobiochem. and Photobiophys. 3:43-51.

Zhang, R., R. M. Suter, and J. F. Nagle. 1994. Theory of the structure factor of lipid bilayers. Phys. Rev. E 50:5047-5060.

Zhang, R., W. Sun, S. Tristram-Nagle, R. L. Headrick, R. M. Suter, and J. F. Nagle. 1995. Critical Fluctuations in Membranes. Phys. Rev. Lett. 74:2832-2835.

 

Figures

Figure 1: The dashed lines show the centers of four bilayers stacked in a perfectly crystalline array. The dot-dash lines show a snap-shot of paracrystalline fluctuations in which the second and third bilayers are displaced with a resulting local D-spacing . The solid lines show a snap-shot of the fluctuations of the Caillé theory that also involve undulations.  


Figure2: The structure factor S(q) times q for paracrystalline theory (PT) (dashed lines) and modified Caillé theory (MCT) (solid lines) versus for = 4.0 Å, = 4270 Å, and = 3600 Å.  


Figure3: The solid lines show typical S(q) for modified Caillé theory (MCT) for the first three peaks, (a) h=1, (b) h=2, and (c) h=3, for D = 60 Å and . The peak heights are normalized to unity and the peak maxima are shifted to zero for comparison of peak shapes for different orders h. Values of the parameters are = 0.050 (=4.0 Å), = 4270 Å, and = 3600 Å. The dashed lines show the best fit to the solid curves using PT which yields = 1.2 Å, = 8440 Å, and = 1560 Å. The dotted lines show the zero levels for each order.  

 
Figure 4: High resolution X-ray configurations M---Si monochromator crystal, S1---sample slits, SH---automatic shutter, IC---Ion chamber detector, S2---scatter slits, A---Si analyzer crystal, FP---flight path (filled with N2 gas) S3---detector slits, NaI---scintillator detector. (a) Non-dispersive configuration. (b) Dispersive configuration.  

 
Figure 5: The solid lines show modified Caillé theory (MCT) fit to DPPC data with 0% PVP and D=64.5 Å. The peak heights are normalized to unity and the peak maxima are shifted to zero for comparison of peak shapes for different orders h. The dashed lines show the best fit using the paracrystalline theory (PT). Parameter values are listed in Table I. The dash-dot line shows the resolution function. The dotted lines show the background subtracted zero levels for each order. For clarity counting statistics error bars are shown only for three data points at the ends and middle of each peak.  


Figure 6: 0% PVP sample data, D=67.2 Å. Solid lines: MCT fits; dashed lines: PT fits; dash-dot lines: resolution function; dotted lines: background subtracted zero levels for each order. Parameter values are listed in Table I. Error bars are shown for three data points for each peak.  

 
Figure 7: 25% PVP sample data, D=58.2 Å. Solid lines: MCT fits; dashed lines: PT fits; dash-dot lines: resolution function; dotted lines: background subtracted zero levels for each order. Parameter values are listed in Table I. Error bars are shown for three data points for each peak.  

 
Figure 8: Same sample as in Fig. 5. Solid lines: MCT fits; dashed lines: ordinary Caillé theory fits.  



next up previous
Up: Small Angle X-ray Scattering From Previous: DISCUSSION



This document was converted to HTML by Nick Gouliaev on Fri Oct 4 15:37:49 EDT 1996
Your comments are welcome at gouliaev@andrew.cmu.edu